ﻻ يوجد ملخص باللغة العربية
Routing strategies for traffics and vehicles have been historically studied. However, in the absence of considering drivers preferences, current route planning algorithms are developed under ideal situations where all drivers are expected to behave rationally and properly. Especially, for jumbled urban road networks, drivers actual routing strategies deteriorated to a series of empirical and selfish decisions that result in congestion. Self-evidently, if minimum mobility can be kept, traffic congestion is avoidable by traffic load dispersing. In this paper, we establish a novel dynamic routing method catering drivers preferences and retaining maximum traffic mobility simultaneously through multi-agent systems (MAS). Modeling human-drivers behavior through agents dynamics, MAS can analyze the global behavior of the entire traffic flow. Therefore, regarding agents as particles in smoothed particles hydrodynamics (SPH), we can enforce the traffic flow to behave like a real flow. Thereby, with the characteristic of distributing itself uniformly in road networks, our dynamic routing method realizes traffic load balancing without violating the individual time-saving motivation. Moreover, as a discrete control mechanism, our method is robust to chaos meaning drivers disobedience can be tolerated. As controlled by SPH based density, the only intelligent transportation system (ITS) we require is the location-based service (LBS). A mathematical proof is accomplished to scrutinize the stability of the proposed control law. Also, multiple testing cases are built to verify the effectiveness of the proposed dynamic routing algorithm.
Within a robot autonomy stack, the planner and controller are typically designed separately, and serve different purposes. As such, there is often a diffusion of responsibilities when it comes to ensuring safety for the robot. We propose that a plann
This paper investigates the online motion coordination problem for a group of mobile robots moving in a shared workspace, each of which is assigned a linear temporal logic specification. Based on the realistic assumptions that each robot is subject t
In this paper we propose a novel consensus protocol for discrete-time multi-agent systems (MAS), which solves the dynamic consensus problem on the max value, i.e., the dynamic max-consensus problem. In the dynamic max-consensus problem to each agent
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback b
This paper investigates the online motion coordination problem for a group of mobile robots moving in a shared workspace. Based on the realistic assumptions that each robot is subject to both velocity and input constraints and can have only local vie