ترغب بنشر مسار تعليمي؟ اضغط هنا

Cycle algebras and polytopes of matroids

116   0   0.0 ( 0 )
 نشر من قبل Sara Saeedi Madani
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Cycle polytopes of matroids have been introduced in combinatorial optimization as a generalization of important classes of polyhedral objects like cut polytopes and Eulerian subgraph polytopes associated to graphs. Here we start an algebraic and geometric investigation of these polytopes by studying their toric algebras, called cycle algebras, and their defining ideals. Several matroid operations are considered which determine faces of cycle polytopes that belong again to this class of polyhedral objects. As a key technique used in this paper, we study certain minors of given matroids which yield algebra retracts on the level of cycle algebras. In particular, that allows us to use a powerful algebraic machinery. As an application, we study highest possible degrees in minimal homogeneous systems of generators of defining ideals of cycle algebras as well as interesting cases of cut polytopes and Eulerian subgraph polytopes.



قيم البحث

اقرأ أيضاً

We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid polytopes. Our resolution provides a cellular realization of Stanleys formula for their Betti numbers. For unimodular matroids our resolutions are related to hyperplane arrangements on tori, and we recover the resolutions constructed by Bayer, Popescu and Sturmfels. We resolve the combinatorial problems posed in their paper by computing Mobius invariants of graphic and cographic arrangements in terms of Hermite polynomials.
Matching fields were introduced by Sturmfels and Zelevinsky to study certain Newton polytopes and more recently have been shown to give rise to toric degenerations of various families of varieties. Whenever a matching field gives rise to a toric dege neration, the associated polytope of the toric variety coincides with the matching field polytope. We study combinatorial mutations, which are analogues of cluster mutations for polytopes, of matching field polytopes and show that the property of giving rise to a toric degeneration of the Grassmannians, is preserved by mutation. Moreover the polytopes arising through mutations are Newton-Okounkov bodies for the Grassmannians with respect to certain full-rank valuations. We produce a large family of such polytopes, extending the family of so-called block diagonal matching fields.
In this paper, we study Lefschetz properties of Artinian reductions of Stanley-Reisner rings of balanced simplicial $3$-polytopes. A $(d-1)$-dimensional simplicial complex is said to be balanced if its graph is $d$-colorable. If a simplicial complex is balanced, then its Stanley-Reisner ring has a special system of parameters induced by the coloring. We prove that the Artinian reduction of the Stanley-Reisner ring of a balanced simplicial $3$-polytope with respect to this special system of parameters has the strong Lefschetz property if the characteristic of the base field is not two or three. Moreover, we characterize $(2,1)$-balanced simplicial polytopes, i.e., polytopes with exactly one red vertex and two blue vertices in each facet, such that an analogous property holds. In fact, we show that this is the case if and only if the induced graph on the blue vertices satisfies a Laman-type combinatorial condition.
We describe the structure of the monoid of natural-valued monotone functions on an arbitrary poset. For this monoid we provide a presentation, a characterization of prime elements, and a description of its convex hull. We also study the associated mo noid ring, proving that it is normal, and thus Cohen-Macaulay. We determine its Cohen-Macaulay type, characterize the Gorenstein property, and provide a Grobner basis of the defining ideal. Then we apply these results to the monoid of quasi-arithmetic multiplicities on a uniform matroid. Finally we state some conjectures on the number of irreducibles for the monoid of multiplicities on an arbitrary matroid.
A remarkable and important property of face numbers of simplicial polytopes is the generalized lower bound inequality, which says that the $h$-numbers of any simplicial polytope are unimodal. Recently, for balanced simplicial $d$-polytopes, that is s implicial $d$-polytopes whose underlying graphs are $d$-colorable, Klee and Novik proposed a balanced analogue of this inequality, that is stronger than just unimodality. The aim of this article is to prove this conjecture of Klee and Novik. For this, we also show a Lefschetz property for rank-selected subcomplexes of balanced simplicial polytopes and thereby obtain new inequalities for their $h$-numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا