ﻻ يوجد ملخص باللغة العربية
We study the dimension theory of limit sets of iterated function systems consisting of a countably infinite number of contractions. Our primary focus is on the intermediate dimensions: a family of dimensions depending on a parameter $theta in [0,1]$ which interpolate between the Hausdorff and box dimensions. Our main results are in the case when all the contractions are conformal. Under a natural separation condition we prove that the intermediate dimensions of the limit set are the maximum of the Hausdorff dimension of the limit set and the intermediate dimensions of the set of fixed points of the contractions. This builds on work of Mauldin and Urbanski concerning the Hausdorff and upper box dimension. We give several (often counter-intuitive) applications of our work to dimensions of projections, fractional Brownian images, and general Holder images. These applications apply to well-studied examples such as sets of numbers which have real or complex continued fraction expansions with restricted entries. We also obtain several results without assuming conformality or any separation conditions. We prove general upper bounds for the Hausdorff, box and intermediate dimensions of infinitely generated attractors in terms of a topological pressure function. We also show that the limit set of a generic infinite iterated function system has box and intermediate dimensions equal to the ambient spatial dimension, where generic can refer to any one of (i) full measure; (ii) prevalent; or (iii) comeagre.
Given a non-empty bounded subset of hyperbolic space and a Kleinian group acting on that space, the orbital set is the orbit of the given set under the action of the group. We may view orbital sets as bounded (often fractal) subsets of Euclidean spac
We study equilibrium measures (Kaenmaki measures) supported on self-affine sets generated by a finite collection of diagonal and anti-diagonal matrices acting on the plane and satisfying the strong separation property. Our main result is that such me
It is observed that the conjugacy growth series of the infinite fini-tary symmetric group with respect to the generating set of transpositions is the generating series of the partition function. Other conjugacy growth series are computed, for other g
Global random attractors and random point attractors for random dynamical systems have been studied for several decades. Here we introduce two intermediate concepts: $Delta$-attractors are characterized by attracting all deterministic compact sets of
We prove the existence of Veech groups having a critical exponent strictly greater than any elementary Fuchsian group (i.e. $>frac{1}{2}$) but strictly smaller than any lattice (i.e. $<1$). More precisely, every affine covering of a primitive L-shape