ﻻ يوجد ملخص باللغة العربية
Modular forms are highly self-symmetric functions studied in number theory, with connections to several areas of mathematics. But they are rarely visualized. We discuss ongoing work to compute and visualize modular forms as 3D surfaces and to use these techniques to make videos flying around the peaks and canyons of these modular terrains. Our goal is to make beautiful visualizations exposing the symmetries of these functions.
We establish an isomorphism between certain complex-valued and vector-valued modular form spaces of half-integral weight, generalizing the well-known isomorphism between modular forms for $Gamma_0(4)$ with Kohnens plus condition and modular forms for
We discuss practical and some theoretical aspects of computing a database of classical modular forms in the L-functions and Modular Forms Database (LMFDB).
In this note, we consider discriminant forms that are given by the norm form of real quadratic fields and their induced Weil representations. We prove that there exists an isomorphism between the space of vector-valued modular forms for the Weil repr
Let $F$ be a totally real field and $p$ be an odd prime which splits completely in $F$. We prove that the eigenvariety associated to a definite quaternion algebra over $F$ satisfies the following property: over a boundary annulus of the weight space,
Let $k$ be an even integer and $S_k$ be the space of cusp forms of weight $k$ on $SL_2(ZZ)$. Let $S = oplus_{kin 2ZZ} S_k$. For $f, gin S$, we let $R(f, g) = { (a_f(p), a_g(p)) in mathbb{P}^1(CC) | text{$p$ is a prime} }$ be the set of ratios of the