ﻻ يوجد ملخص باللغة العربية
We show that if $G_1$ and $G_2$ are non-solvable groups, then no $C^{1,tau}$ action of $(G_1times G_2)*mathbb{Z}$ on $S^1$ is faithful for $tau>0$. As a corollary, if $S$ is an orientable surface of complexity at least three then the critical regularity of an arbitrary finite index subgroup of the mapping class group $mathrm{Mod}(S)$ with respect to the circle is at most one, thus strengthening a result of the first two authors with Baik.
In this monograph, we give an account of the relationship between the algebraic structure of finitely generated and countable groups and the regularity with which they act on manifolds. We concentrate on the case of one--dimensional manifolds, culmin
We construct explicit examples of geodesics in the mapping class group and show that the shadow of a geodesic in mapping class group to the curve graph does not have to be a quasi-geodesic. We also show that the quasi-axis of a pseudo-Anosov element
Let $X$ be a proper geodesic Gromov hyperbolic metric space and let $G$ be a cocompact group of isometries of $X$ admitting a uniform lattice. Let $d$ be the Hausdorff dimension of the Gromov boundary $partial X$. We define the critical exponent $del
We give a short proof of Masbaum and Reids result that mapping class groups involve any finite group, appealing to free quotients of surface groups and a result of Gilman, following Dunfield-Thurston.
We study two transitivity properties for group actions on buildings, called Weyl transitivity and strong transitivity. Following hints by Tits, we give examples involving anisotropic algebraic groups to show that strong transitivity is strictly stron