ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction of a Waveguide Mode at the Transverse Boundary of Magnetized Plasma

240   0   0.0 ( 0 )
 نشر من قبل Sergey N. Galyamin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we develop a general theory of mode transformation (diffraction) at the flat transverse boundary between cold magnetized electron plasma and isotropic vacuum-like medium inside a circular waveguide. The obtained results can be also directly applied to the narrow-band Cherenkov radiation generated in plasma (or in isotropic medium) by a moving charged particle bunch.

قيم البحث

اقرأ أيضاً

We analyze the electromagnetic field of a small bunch that uniformly moves in a circular waveguide and transverses a boundary between an area filled up with cold magnetized electron plasma and a vacuum area. The magnetic field is supposed to be stron g but finite so the perturbation technique can be applied. Two cases are studied in detail: the bunch is flying out of the plasma into a vacuum, and, inversely, the bunch is flying into the plasma out of the vacuum area of waveguide. The investigation of the waveguide mode components is performed analytically with methods of the complex variable function theory. The main peculiarities of the bunch radiation in such situations are revealed.
75 - Sergey N. Galyamin 2021
Wakefield particle acceleration in hollow plasma channels is under extensive study nowadays. Here we consider an externally magnetized plasma layer (external magnetic field of arbitrary magnitude is along the structure axis) and investigate wakefield s generated by a point charge passing along the layer axis.
Laser-plasma accelerators produce electric fields of the order of 100 GV/m, more than 1000 times larger than radio-frequency accelerators. Thanks to this unique field strength, they appear as a promising path to generate electron beams beyond the TeV , for high-energy physics. Yet, large electric fields are of little benefit if they are not maintained over a long distance. It is therefore of the utmost importance to guide the ultra-intense laser pulse that drives the accelerator. Reaching very high energies is equally useless if the properties of the electron beam change completely shot to shot. While present state-of-the-art laser-plasma accelerators can already separately address guiding and control challenges by tweaking the plasma structures, the production of beams combining high quality and high energy is yet to be demonstrated. Here we use a new approach for guiding the laser, and combined it with a controlled injection technique to demonstrate the reliable and efficient acceleration of high-quality electron beams up to 1.1 GeV, from a 50 TW-class laser.
Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.
116 - Shiyu Zhou , Jianfei Hua , Wei Lu 2020
Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while mai ntaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to-date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high-efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasi-static particle-in-cell (PIC) simulations show that over 30% energy extraction efficiency from the wake to the positrons and 1% level energy spread can be simultaneously obtained, and further optimization is feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا