ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling End-to-End Models for Large-Scale Multilingual ASR

131   0   0.0 ( 0 )
 نشر من قبل Bo Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Building ASR models across many languages is a challenging multi-task learning problem due to large variations and heavily unbalanced data. Existing work has shown positive transfer from high resource to low resource languages. However, degradations on high resource languages are commonly observed due to interference from the heterogeneous multilingual data and reduction in per-language capacity. We conduct a capacity study on a 15-language task, with the amount of data per language varying from 7.6K to 53.5K hours. We adopt GShard [1] to efficiently scale up to 10B parameters. Empirically, we find that (1) scaling the number of model parameters is an effective way to solve the capacity bottleneck - our 500M-param model already outperforms monolingual baselines and scaling it to 1B and 10B brought further quality gains; (2) larger models are not only more data efficient, but also more efficient in terms of training cost as measured in TPU days - the 1B-param model reaches the same accuracy at 34% of training time as the 500M-param model; (3) given a fixed capacity budget, adding depth works better than width and large encoders do better than large decoders; (4) with continuous training, they can be adapted to new languages and domains.

قيم البحث

اقرأ أيضاً

We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using emph{symbolic} input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enables seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER), and as much as 7-10% relative word error rate (WER) improvement over a baseline both with and without an external language model.
We study pseudo-labeling for the semi-supervised training of ResNet, Time-Depth Separable ConvNets, and Transformers for speech recognition, with either CTC or Seq2Seq loss functions. We perform experiments on the standard LibriSpeech dataset, and le verage additional unlabeled data from LibriVox through pseudo-labeling. We show that while Transformer-based acoustic models have superior performance with the supervised dataset alone, semi-supervision improves all models across architectures and loss functions and bridges much of the performance gaps between them. In doing so, we reach a new state-of-the-art for end-to-end acoustic models decoded with an external language model in the standard supervised learning setting, and a new absolute state-of-the-art with semi-supervised training. Finally, we study the effect of leveraging different amounts of unlabeled audio, propose several ways of evaluating the characteristics of unlabeled audio which improve acoustic modeling, and show that acoustic models trained with more audio rely less on external language models.
In this paper, we propose to use pre-trained features from end-to-end ASR models to solve speech sentiment analysis as a down-stream task. We show that end-to-end ASR features, which integrate both acoustic and text information from speech, achieve p romising results. We use RNN with self-attention as the sentiment classifier, which also provides an easy visualization through attention weights to help interpret model predictions. We use well benchmarked IEMOCAP dataset and a new large-scale speech sentiment dataset SWBD-sentiment for evaluation. Our approach improves the-state-of-the-art accuracy on IEMOCAP from 66.6% to 71.7%, and achieves an accuracy of 70.10% on SWBD-sentiment with more than 49,500 utterances.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained compl etely from scratch to translate unseen sentences. Our method consists of a pyramidal-bidirectional recurrent network combined with a convolutional network to output sentence-level spectrograms in the target language. Empirically, our model achieves competitive performance with state-of-the-art methods on multiple languages and can generalize to unseen speakers.
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant t raining (PIT), SOT uses a model with only one output layer that generates the transcriptions of multiple speakers one after another. The attention and decoder modules take care of producing multiple transcriptions from overlapped speech. SOT has two advantages over PIT: (1) no limitation in the maximum number of speakers, and (2) an ability to model the dependencies among outputs for different speakers. We also propose a simple trick that allows SOT to be executed in $O(S)$, where $S$ is the number of the speakers in the training sample, by using the start times of the constituent source utterances. Experimental results on LibriSpeech corpus show that the SOT models can transcribe overlapped speech with variable numbers of speakers significantly better than PIT-based models. We also show that the SOT models can accurately count the number of speakers in the input audio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا