ﻻ يوجد ملخص باللغة العربية
The training loss function that enforces certain training sample distribution patterns plays a critical role in building a re-identification (ReID) system. Besides the basic requirement of discrimination, i.e., the features corresponding to different identities should not be mixed, additional intra-class distribution constraints, such as features from the same identities should be close to their centers, have been adopted to construct losses. Despite the advances of various new loss functions, it is still challenging to strike the balance between the need of reducing the intra-class variation and allowing certain distribution freedom. In this paper, we propose a new loss based on center predictivity, that is, a sample must be positioned in a location of the feature space such that from it we can roughly predict the location of the center of same-class samples. The prediction error is then regarded as a loss called Center Prediction Loss (CPL). We show that, without introducing additional hyper-parameters, this new loss leads to a more flexible intra-class distribution constraint while ensuring the between-class samples are well-separated. Extensive experiments on various real-world ReID datasets show that the proposed loss can achieve superior performance and can also be complementary to existing losses.
Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few fram
Although great progress in supervised person re-identification (Re-ID) has been made recently, due to the viewpoint variation of a person, Re-ID remains a massive visual challenge. Most existing viewpoint-based person Re-ID methods project images fro
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is n
Person re-identification (ReID) is an important task in wide area video surveillance which focuses on identifying people across different cameras. Recently, deep learning networks with a triplet loss become a common framework for person ReID. However
Most existing Re-IDentification (Re-ID) methods are highly dependent on precise bounding boxes that enable images to be aligned with each other. However, due to the challenging practical scenarios, current detection models often produce inaccurate bo