ﻻ يوجد ملخص باللغة العربية
We propose an extrinsic, continuous-Galerkin (CG), extended finite element method (XFEM) that generalizes the work of Hansbo and Hansbo to allow multiple Heaviside enrichments within a single element in a hierarchical manner. This approach enables complex, evolving XFEM surfaces in 3D that cannot be captured using existing CG-XFEM approaches. We describe an implementation of the method for 3D static elasticity with linearized strain for modeling open cracks as a salient step towards modeling progressive fracture. The implementation includes a description of the finite element model, hybrid implicit/explicit representation of enrichments, numerical integration method, and novel degree-of-freedom (DoF) enumeration algorithm. This algorithm supports an arbitrary number of enrichments within an element, while simultaneously maintaining a CG solution across elements. Additionally, our approach easily allows an implementation suitable for distributed computing systems. Enabled by the DoF enumeration algorithm, the proposed method lays the groundwork for a computational tool that efficiently models progressive fracture. To facilitate a discussion of the complex enrichment hierarchies, we develop enrichment diagrams to succinctly describe and visualize the relationships between the enrichments (and the fields they create) within an element. This also provides a unified language for discussing extrinsic XFEM methods in the literature. We compare several methods, relying on the enrichment diagrams to highlight their nuanced differences.
In this paper, five different approaches for reduced-order modeling of brittle fracture in geomaterials, specifically concrete, are presented and compared. Four of the five methods rely on machine learning (ML) algorithms to approximate important asp
A new gradient-based formulation for predicting fracture in elastic-plastic solids is presented. Damage is captured by means of a phase field model that considers both the elastic and plastic works as driving forces for fracture. Material deformation
Variational phase-field methods have been shown powerful for the modeling of complex crack propagation without a priori knowledge of the crack path or ad hoc criteria. However, phase-field models suffer from their energy functional being non-linear a
We present a new data-driven paradigm for variational brittle fracture mechanics. The fracture-related material modeling assumptions are removed and the governing equations stemming from variational principles are combined with a set of discrete data
This article proposes an open-source implementation of a phase-field model for brittle fracture using a recently developed finite element toolbox, Gridap in Julia. The present work exploits the advantages of both the phase-field model and Gridap tool