ترغب بنشر مسار تعليمي؟ اضغط هنا

Moonshine: An Online Randomness Distiller for Zero-Involvement Authentication

60   0   0.0 ( 0 )
 نشر من قبل Jack West
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Context-based authentication is a method for transparently validating another devices legitimacy to join a network based on location. Devices can pair with one another by continuously harvesting environmental noise to generate a random key with no user involvement. However, there are gaps in our understanding of the theoretical limitations of environmental noise harvesting, making it difficult for researchers to build efficient algorithms for sampling environmental noise and distilling keys from that noise. This work explores the information-theoretic capacity of context-based authentication mechanisms to generate random bit strings from environmental noise sources with known properties. Using only mild assumptions about the source processs characteristics, we demonstrate that commonly-used bit extraction algorithms extract only about 10% of the available randomness from a source noise process. We present an efficient algorithm to improve the quality of keys generated by context-based methods and evaluate it on real key extraction hardware. Moonshine is a randomness distiller which is more efficient at extracting bits from an environmental entropy source than existing methods. Our techniques nearly double the quality of keys as measured by the NIST test suite, producing keys that can be used in real-world authentication scenarios.

قيم البحث

اقرأ أيضاً

Port Knocking is a method for authenticating clients through a closed stance firewall, and authorising their requested actions, enabling severs to offer services to authenticated clients, without opening ports on the firewall. Advances in port knocki ng have resulted in an increase in complexity in design, preventing port knocking solutions from realising their potential. This paper proposes a novel port knocking solution, named Crucible, which is a secure method of authentication, with high usability and features of stealth, allowing servers and services to remain hidden and protected. Crucible is a stateless solution, only requiring the client memorise a command, the servers IP and a chosen password. The solution is forwarded as a method for protecting servers against attacks ranging from port scans, to zero-day exploitation. To act as a random oracle for both client and server, cryptographic hashes were generated through chaotic systems.
We present VoltKey, a method that transparently generates secret keys for colocated devices, leveraging spatiotemporally unique noise contexts observed in commercial power line infrastructure. VoltKey extracts randomness from power line noise and sec urely converts it into an authentication token. Nearby devices which observe the same noise patterns on the powerline generate identical keys. The unique noise pattern observed only by trusted devices connected to a local power line prevents malicious devices without physical access from obtaining unauthorized access to the network. VoltKey is implemented inside of a standard USB power supply as a platform-agnostic bolt-on addition to any IoT or mobile device or any wireless access point that is connected to the power outlet.
Copyright protection and authentication of digital contents has become a significant issue in the current digital epoch with efficient communication mediums such as internet. Plain text is the rampantly used medium used over the internet for informat ion exchange and it is very crucial to verify the authenticity of information. There are very limited techniques available for plain text watermarking and authentication. This paper presents a novel zero-watermarking algorithm for authentication of plain text. The algorithm generates a watermark based on the text contents and this watermark can later be extracted using extraction algorithm to prove the authenticity of text document. Experimental results demonstrate the effectiveness of the algorithm against tampering attacks identifying watermark accuracy and distortion rate on 10 different text samples of varying length and attacks.
-Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. I n this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy.
263 - Joseph Y. Halpern 2017
While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple lo gic based on the well-understood modal operators of knowledge, time, and probability, and show that it is able to handle issues that have often been swept under the rug by other approaches, while being flexible enough to capture all the higher- level security notions that appear in BAN logic. Moreover, while still assuming that the knowledge operator allows for unbounded computation, it can handle the fact that a computationally bounded agent cannot decrypt messages in a natural way, by distinguishing strings and message terms. We demonstrate that our logic can capture BAN logic notions by providing a translation of the BAN operators into our logic, capturing belief by a form of probabilistic knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا