ترغب بنشر مسار تعليمي؟ اضغط هنا

A revisited study of Cepheids in open clusters in the Gaia era

72   0   0.0 ( 0 )
 نشر من قبل Gustavo E. Medina Toledo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we revisit the problem of identifying bona fide cluster Cepheids by performing an all-sky search for Cepheids associated with open clusters and making use of state-of-the-art catalogued information for both Cepheids and clusters, based on the unparalleled astrometric precision of the second and early third data releases of the Gaia satellite. We determine membership probabilities by following a Bayesian approach using spatial and kinematic information of the potential cluster-Cepheid pairs. We confirm 19 Cepheid-cluster associations considered in previous studies as bona-fide, and question the established cluster membership of six other associations. In addition, we identify 138 cluster Cepheid candidates of potential interest, mostly in recently discovered open clusters. We report on at least two new clusters possibly hosting more than one Cepheid. Furthermore, we explore the feasibility of using open clusters hosting Cepheids to empirically determine the Cepheid period-age relation through the use of Gaia and 2MASS photometry and a semi-automated method to derive cluster ages. We conclude that the usage of cluster Cepheids as tentative probes of the period-age relations still faces difficulties due to the sparsely populated red giant branch and the stochastically sampled main-sequence turn-off of the open clusters, making age determinations a challenging task. This biases the age-dateable cluster selection for Cepheid period-age studies towards older and high-mass clusters.


قيم البحث

اقرأ أيضاً

Classical Cepheids in open clusters are key ingredients for stellar population studies and the characterization of variable stars, as they are tracers of young and massive populations and of recent star formation episodes. Cluster Cepheids are of par ticular importance since they can be age dated by using the clusters stellar population to obtain the Cepheid period-luminosity-age relation. In this contribution, we present the preliminary results of an all-sky search for classical Cepheids in Galactic open clusters by taking advantage of the unprecedented astrometric precision of the second data release of the Gaia satellite. To do this, we determined membership probabilities by performing a Bayesian analysis based on the spatial distribution of Cepheids and clusters, and their kinematics. Here we describe our adopted methodology.
110 - Angela Bragaglia 2017
Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the wealth of exquisite information we are expecting from the more advanced catalogues, but already offers good opportunities and indicates the vast potentialities. Gaia results can be efficiently complemented by ground-based data, in particular by large spectroscopic and photometric surveys. Examples of some scientific results of the Gaia-ESO survey are presented, as a teaser for what will be possible once advanced Gaia releases and ground-based data will be combined.
The publication of the Gaia Data Release 2 (Gaia DR2) opens a new era in Astronomy. It includes precise astrometric data (positions, proper motions and parallaxes) for more than $1.3$ billion sources, mostly stars. To analyse such a vast amount of ne w data, the use of data mining techniques and machine learning algorithms are mandatory. The search for Open Clusters, groups of stars that were born and move together, located in the disk, is a great example for the application of these techniques. Our aim is to develop a method to automatically explore the data space, requiring minimal manual intervention. We explore the performance of a density based clustering algorithm, DBSCAN, to find clusters in the data together with a supervised learning method such as an Artificial Neural Network (ANN) to automatically distinguish between real Open Clusters and statistical clusters. The development and implementation of this method to a $5$-Dimensional space ($l$, $b$, $varpi$, $mu_{alpha^*}$, $mu_delta$) to the Tycho-Gaia Astrometric Solution (TGAS) data, and a posterior validation using Gaia DR2 data, lead to the proposal of a set of new nearby Open Clusters. We have developed a method to find OCs in astrometric data, designed to be applied to the full Gaia DR2 archive.
78 - P. B. Stetson 2019
We present wide-field, ground-based Johnson-Cousins UBVRI photometry for 48 Galactic globular clusters based on almost 90000 public and proprietary images. The photometry is calibrated with the latest transformations obtained in the framework of our secondary standard project, with typical internal and external uncertainties of order a few millimagnitudes. These data provide a bridge between existing small-area, high-precision HST photometry and all sky-catalogues from large surveys like Gaia, SDSS, or LSST. For many clusters, we present the first publicly available photometry in some of the five bands (typically U and R). We illustrate the scientific potential of the photometry with examples of surface density and brightness profiles and of colour-magnitude diagrams, with the following highlights: (i) we study the morphology of NGC 5904, finding a varying ellipticity and position angle as a function of radial distance; (ii) we show U-based colour-magnitude diagrams and demonstrate that no cluster in our sample is free from multiple stellar populations, with the possible exception of a few clusters with high and differential reddening or field contamination, for which more sophisticated investigations are required. This is true even for NGC 5694 and Terzan 8, that were previously considered as (mostly) single-population candidates.
Context. The physical processes driving the formation of Galactic spiral arms are still under debate. Studies using open clusters favour the description of the Milky Way spiral arms as long-lived structures following the classical density wave theory . Current studies comparing the Gaia DR2 field stars kinematic information of the Solar neighbourhood to simulations, find a better agreement with short-lived arms with a transient behaviour. Aims. Our aim is to provide an observational, data-driven view of the Milky Way spiral structure and its dynamics using open clusters as the main tracers, and to contrast it with simulation-based approaches. We use the most complete catalogue of Milky Way open clusters, with astrometric Gaia EDR3 updated parameters, estimated astrophysical information and radial velocities, to re-visit the nature of the spiral pattern of the Galaxy. Methods. We use a Gaussian mixture model to detect overdensities of open clusters younger than 30 Myr that correspond to the Perseus, Local, Sagittarius and Scutum spiral arms, respectively. We use the birthplaces of the open cluster population younger than 80 Myr to trace the evolution of the different spiral arms and compute their pattern speed. We analyse the age distribution of the open clusters across the spiral arms to explore the differences in the rotational velocity of stars and spiral arms. Results. We are able to increase the range in Galactic azimuth where present-day spiral arms are described, better estimating its parameters by adding 264 young open clusters to the 84 high-mass star-forming regions used so far, thus increasing by a 314% the number of tracers. We use the evolution of the open clusters from their birth positions to find that spiral arms nearly co-rotate with field stars at any given radius, discarding a common spiral pattern speed for the spiral arms explored. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا