ﻻ يوجد ملخص باللغة العربية
We compute explicitly the Khovanov polynomials (using the computer program from katlas.org) for the two simplest families of the satellite knots, which are the twisted Whitehead doubles and the two-strand cables. We find that a quantum group decomposition for the HOMFLY polynomial of a satellite knot can be extended to the Khovanov polynomial, whose quantum group properties are not manifest. Namely, the Khovanov polynomial of a twisted Whitehead double or two-strand cable (the two simplest satellite families) can be presented as a naively deformed linear combination of the pattern and companion invariants. For a given companion, the satellite polynomial smoothly depends on the pattern but for the jump at one critical point defined by the s-invariant of the companion knot. A similar phenomenon is known for the knot Floer homology and tau-invariant for the same kind of satellites.
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jac
In this note we make an attempt to compare a cohomological theory of Hilbert spaces of ground states in the ${cal N}=(2,2)$ 2d Landau-Ginzburg theory in models describing link embeddings in ${mathbb{R}}^3$ to Khovanov and Khovanov-Rozansky homologies
The contents of the paper is now covered in two separate papers arXiv:0904.2188 and arXiv:0904.2602. Please refer to those. Note that you can still access the original version arXiv:0711.4082v1.
We present a simple construction for a tridiagonal matrix $T$ that commutes with the hopping matrix for the entanglement Hamiltonian ${cal H}$ of open finite free-Fermion chains associated with families of discrete orthogonal polynomials. It is based
A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of