ﻻ يوجد ملخص باللغة العربية
In previous work, we study the Gan-Gross-Prasad problem for unipotent representations of finite classical groups. In this paper, we deduce the Gan-Gross-Prasad problem for arbitrary representations from the unipotent representations by Lusztig correspondence.
In this paper we study the Gan-Gross-Prasad problem for finite classical groups. Our results provide complete answers for unipotent representations, and we obtain the explicit branching laws for these representations. Moreover, for arbitrary represen
Through combining the work of Jean-Loup Waldspurger (cite{waldspurger10} and cite{waldspurgertemperedggp}) and Raphael Beuzart-Plessis (cite{beuzart2015local}), we give a proof for the tempered part of the local Gan-Gross-Prasad conjecture (cite{ggpo
We introduce the notion of minimal reduction type of an affine Springer fiber, and use it to define a map from the set of conjugacy classes in the Weyl group to the set of nilpotent orbits. We show that this map is the same as the one defined by Lusz
We use geometry of the wonderful compactification to obtain a new proof of the relation between Deligne-Lusztig (or Alvis-Curtis) duality for $p$-adic groups and the homological duality. This provides a new way to introduce an involution on the set o
Let T_n be the maximal torus of diagonal matrices in GL_n, t_n be the Lie algebra of T_n and let N_n=N_{GL_n}(T_n) be the normalizer of T_n in GL_n. Consider then the quotient stacks [t_n/N_n] and [gl_n/GL_n] for the conjugation actions. In this pape