ﻻ يوجد ملخص باللغة العربية
We investigate the invariance of the Gibbs measure for the fractional Schrodinger equation of exponential type (expNLS) $ipartial_t u + (-Delta)^{frac{alpha}2} u = 2gammabeta e^{beta|u|^2}u$ on $d$-dimensional compact Riemannian manifolds $mathcal{M}$, for a dispersion parameter $alpha>d$, some coupling constant $beta>0$, and $gamma eq 0$. (i) We first study the construction of the Gibbs measure for (expNLS). We prove that in the defocusing case $gamma>0$, the measure is well-defined in the whole regime $alpha>d$ and $beta>0$ (Theorem 1.1 (i)), while in the focusing case $gamma<0$ its partition function is always infinite for any $alpha>d$ and $beta>0$, even with a mass cut-off of arbitrary small size (Theorem 1.1 (ii)). (ii) We then study the dynamics (expNLS) with random initial data of low regularity. We first use a compactness argument to prove weak invariance of the Gibbs measure in the whole regime $alpha>d$ and $0<beta < beta^star_alpha$ for some natural parameter $0<beta^star_alphasim (alpha-d)$ (Theorem 1.3 (i)). In the large dispersion regime $alpha>2d$, we can improve this result by constructing a local deterministic flow for (expNLS) for any $beta>0$. Using the Gibbs measure, we prove that solutions are almost surely global for $0<beta llbeta^star_alpha$, and that the Gibbs measure is invariant (Theorem 1.3 (ii)). (iii) Finally, in the particular case $d=1$ and $mathcal{M}=mathbb{T}$, we are able to exploit some probabilistic multilinear smoothing effects to build a probabilistic flow for (expNLS) for $1+frac{sqrt{2}}2<alpha leq 2$, locally for arbitrary $beta>0$ and globally for $0<beta ll beta^star_alpha$ (Theorem 1.5).
This paper deals with the 2-D Schrodinger equation with time-oscillating exponential nonlinearity $ipartial_t u+Delta u= theta(omega t)big(e^{4pi|u|^2}-1big)$, where $theta$ is a periodic $C^1$-function. We prove that for a class of initial data $u_0
In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter $beta^2 > 0$, and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the G
We continue the study on the transport properties of the Gaussian measures on Sobolev spaces under the dynamics of the cubic fourth order nonlinear Schrodinger equation. By considering the renormalized equation, we extend the quasi-invariance results
We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-
In this paper we consider the initial value {problem $partial_{t} u- Delta u=f(u),$ $u(0)=u_0in exp,L^p(mathbb{R}^N),$} where $p>1$ and $f : mathbb{R}tomathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on th