ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant elastic scattering of polarized electrons on H-like ions

242   0   0.0 ( 0 )
 نشر من قبل Oleg Andreev Yu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The polarization properties of the elastic electron scattering on H-like ions are investigated within the framework of the relativistic QED theory. The polarization properties are determined by a combination of relativistic effects and spin exchange between the incident and bound electrons. The scattering of a polarized electron on an initially unpolarized ion is fully described by five parameters. We study these parameters for non-resonant scattering, as well as in the vicinity of LL resonances, where scattering occurs through the formation and subsequent decay of intermediate autoionizing states. The study was carried out for ions from $txt{B}^{4+}$ to $txt{Xe}^{53+}$. Special attention was paid to the study of asymmetry in electron scattering.



قيم البحث

اقرأ أيضاً

We develop {it ab initio} relativistic QED theory for elastic electron scattering on hydrogen-like highly charged ions for impact energies where, in addition to direct (Coulomb) scattering, the process can also proceed via formation and consequent Au ger decay of autoionizing states of the corresponding helium-like ions. Even so the primary goal of the theory is to treat electron scattering on highly charged ions, a comparison with experiment shows that it can also be applied for relatively light ions covering thus a very broad range of the scattering systems. Using the theory we performed calculations for elastic electron scattering on B$^{4+}$, Ca$^{19+}$, Fe$^{25+}$, Kr$^{35+}$, and Xe$^{53+}$. The theory was also generalized for collisions of hydrogen-like highly charged ions with atoms considering the latter as a source of (quasi-) free electrons.
We investigate the possibility of observing a magneto-transverse scattering of photons from alkaline-earth-like atoms as well as alkali-like ions and provide orders of magnitude. The transverse magneto-scattering is physically induced by the interfer ence between two possible quantum transitions of an outer electron in a S-state, one dispersive electric-dipole transition to a P-orbital state and a second resonant electric-quadrupole transition to a P-orbital state. In contrast with previous mechanisms proposed for such an atomic photonic Hall effect, no real photons are scattered by the electric-dipole allowed transition, which increases the ratio of Hall current to background photons significantly. The main experimental challenge is to overcome the small detection threshold, with only 10^{-5} photons scattered per atom per second.
The nuclear recoil effect on the $g$ factor of Li-like ions is evaluated. The one-electron recoil contribution is treated within the framework of the rigorous QED approach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders i n the parameter $alpha Z$. These calculations are performed in a range $Z=3-92$. The two-electron recoil term is calculated for low- and middle-$Z$ ions within the Breit approximation using a four-component approach. The results for the two-electron recoil part obtained in the paper strongly disagree with the previous calculations performed using an effective two-component Hamiltonian. The obtained value for the recoil effect is used to calculate the isotope shift of the $g$ factor of Li-like $^{A}$Ca$^{17+}$ with $A=40$ and $A=48$ which was recently measured. It is found that the new theoretical value for the isotope shift is closer to the experimental one than the previously obtained value.
We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence.
Theoretical studies are presented how the electric dipole moment (EDM) of the electron in H-like ions in electrostatic storage rings can sensitively be determined. With the proposed experiments a new constraint of about $10^{-29}$ e cm for the electr on EDM can be established what is by an order of magnitude more restrictive than the existing bounds. Experiments with H-like ions may provide a possibility to distinguish between the electron EDM effect and the effect of P,T violating interaction between the atomic electron and the nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا