ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sharpest Ultraviolet view of the star formation in an extreme environment of the nearest Jellyfish Galaxy IC 3418

96   0   0.0 ( 0 )
 نشر من قبل Ananda Hota
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ananda Hota




اسأل ChatGPT حول البحث

We present the far ultraviolet (FUV) imaging of the nearest Jellyfish or Fireball galaxy IC3418/VCC 1217, in the Virgo cluster of galaxies, using Ultraviolet Imaging Telescope (UVIT) onboard the ASTROSAT satellite. The young star formation observed here in the 17 kpc long turbulent wake of IC3418, due to ram pressure stripping of cold gas surrounded by hot intra-cluster medium, is a unique laboratory that is unavailable in the Milkyway. We have tried to resolve star forming clumps, seen compact to GALEX UV images, using better resolution available with the UVIT and incorporated UV-optical images from Hubble Space Telescope archive. For the first time, we resolve the compact star forming clumps (fireballs) into sub-clumps and subsequently into a possibly dozen isolated stars. We speculate that many of them could be blue supergiant stars which are cousins of SDSS J122952.66+112227.8, the farthest star (~17 Mpc) we had found earlier surrounding one of these compact clumps. We found evidence of star formation rate (4 - 7.4 x 10^-4 M_sun per yr ) in these fireballs, estimated from UVIT flux densities, to be increasing with the distance from the parent galaxy. We propose a new dynamical model in which the stripped gas may be developing vortex street where the vortices grow to compact star forming clumps due to self-gravity. Gravity winning over turbulent force with time or length along the trail can explain the puzzling trend of higher star formation rate and bluer/younger stars observed in fireballs farther away from the parent galaxy.



قيم البحث

اقرأ أيضاً

Ram-pressure stripping by the gaseous intra-cluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to rel atively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at $z>0.3$. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring $M_{rm F606W}<-$21 mag, doubles the number of such systems presently known at $z>0.2$ and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.
Based on observations from the emph{FourStar} near-infrared camera on the 6.5m Baade-Magellan telescope at Las Campanas, Chile, we present calibrations of the $JHK$ luminosities of stars defining the tip of the red giant branch (TRGB) in the halo of the Local Group dwarf galaxy IC 1613. We employ metallicity-independent (rectified) T-band magnitudes---constructed using $J,H$ and $K$-band magnitudes and both $(J-H)~ & ~(J-K)$ colors in order to flatten the upward-sloping red giant branch tips as otherwise seen in their apparent color-magnitude diagrams. We describe and quantify the advantages of working at these particular near-infrared wavelengths, which are applicable to both emph{HST} and emph{JWST}. We also note that these same wavelengths can be accessed from the ground for an eventual tie-in to emph{Gaia} for absolute astrometry and parallaxes to calibrate the intrinsic luminosity of the TRGB. Adopting the color terms derived from the IC 1613 data, as well as the zero-points from a companion study of the Large Magellanic Cloud whose distance is anchored to the geometric distances of detached eclipsing binaries, we find a true distance modulus of 24.32 $pm$ 0.02~ (statistical) $pm$ 0.06~mag (systematic) for IC 1613, which compares favorably with the recently published multi-wavelength, multi-method consensus modulus of 24.30 $pm$ 0.05~mag by Hatt et al. (2017).
We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500 - 920 $AA$) of high luminosity quasars using HST (low to intermediate redshift sample) and SDSS (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is $> 2times 10^{7}$ sec compared to $< 1.5times 10^{7}$ sec. Based on an excess variance analysis, for time intervals $< 2times 10^{7}$ sec in the quasar rest frame, $10%$ of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals $>2times 10^{7}$ sec in the quasar rest frame, $55%$ of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between $2.5times 10^{7}$ sec and $3.16times 10^{7}$ sec (1 yr). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these time scales. A threshold time scale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0 - 7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability time scale.
308 - M. Cignoni 2012
The Bar is the most productive region of the Small Magellanic Cloud in terms of star formation but also the least studied one. In this paper we investigate the star formation history of two fields located in the SW and in the NE portion of the Bar us ing two independent and well tested procedures applied to the color-magnitude diagrams of their stellar populations resolved by means of deep HST photometry. We find that the Bar experienced a negligible star formation activity in the first few Gyr, followed by a dramatic enhancement from 6 to 4 Gyr ago and a nearly constant activity since then. The two examined fields differ both in the rate of star formation and in the ratio of recent over past activity, but share the very low level of initial activity and its sudden increase around 5 Gyr ago. The striking similarity between the timing of the enhancement and the timing of the major episode in the Large Magellanic Cloud is suggestive of a close encounter triggering star formation.
Using deep 21-cm HI data from the Green Bank Telescope we have detected an ~18.3 kpc-long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly-found feature stretches 1.3 deg to the northwest and has a large radial velocit y gradient reaching to ~65 km/s lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (~10 km/s across ~26 arcmin) transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The HI mass of IC 10 is 9.5x10^7 (d/805 kpc)^2 Msun and the mass of the new extension is 7.1x10^5 (d/805 kpc)^2 Msun. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the HI extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously-found counter-rotating HI gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا