ﻻ يوجد ملخص باللغة العربية
Autonomous vehicles face tremendous challenges while interacting with human drivers in different kinds of scenarios. Developing control methods with safety guarantees while performing interactions with uncertainty is an ongoing research goal. In this paper, we present a real-time safe control framework using bi-level optimization with Control Barrier Function (CBF) that enables an autonomous ego vehicle to interact with human-driven cars in ramp merging scenarios with a consistent safety guarantee. In order to explicitly address motion uncertainty, we propose a novel extension of control barrier functions to a probabilistic setting with provable chance-constrained safety and analyze the feasibility of our control design. The formulated bi-level optimization framework entails first choosing the ego vehicles optimal driving style in terms of safety and primary objective, and then minimally modifying a nominal controller in the context of quadratic programming subject to the probabilistic safety constraints. This allows for adaptation to different driving strategies with a formally provable feasibility guarantee for the ego vehicles safe controller. Experimental results are provided to demonstrate the effectiveness of our proposed approach.
Widespread adoption of autonomous cars will require greater confidence in their safety than is currently possible. Certified control is a new safety architecture whose goal is two-fold: to achieve a very high level of safety, and to provide a framewo
Drift control is significant to the safety of autonomous vehicles when there is a sudden loss of traction due to external conditions such as rain or snow. It is a challenging control problem due to the presence of significant sideslip and nearly full
Autonomous vehicles bring the promise of enhancing the consumer experience in terms of comfort and convenience and, in particular, the safety of the autonomous vehicle. Safety functions in autonomous vehicles such as Automatic Emergency Braking and L
In this work, we address the motion planning problem for autonomous vehicles through a new lattice planning approach, called Feedback Enhanced Lattice Planner (FELP). Existing lattice planners have two major limitations, namely the high dimensionalit
Motion prediction of vehicles is critical but challenging due to the uncertainties in complex environments and the limited visibility caused by occlusions and limited sensor ranges. In this paper, we study a new task, safety-aware motion prediction w