ترغب بنشر مسار تعليمي؟ اضغط هنا

A positivity-preserving, energy stable scheme for a Ternary Cahn-Hilliard system with the singular interfacial parameters

72   0   0.0 ( 0 )
 نشر من قبل Lixiu Dong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we construct and analyze a uniquely solvable, positivity preserving and unconditionally energy stable finite-difference scheme for the periodic three-component Macromolecular Microsphere Composite (MMC) hydrogels system, a ternary Cahn-Hilliard system with a Flory-Huggins-deGennes free energy potential. The proposed scheme is based on a convex-concave decomposition of the given energy functional with two variables, and the centered difference method is adopted in space. We provide a theoretical justification that this numerical scheme has a pair of unique solutions, such that the positivity is always preserved for all the singular terms, i.e., not only two phase variables are always between $0$ and $1$, but also the sum of two phase variables is between $0$ and $1$, at a point-wise level. In addition, we use the local Newton approximation and multigrid method to solve this nonlinear numerical scheme, and various numerical results are presented, including the numerical convergence test, positivity-preserving property test, energy dissipation and mass conservation properties.



قيم البحث

اقرأ أيضاً

We present and analyze a new second-order finite difference scheme for the Macromolecular Microsphere Composite hydrogel, Time-Dependent Ginzburg-Landau (MMC-TDGL) equation, a Cahn-Hilliard equation with Flory-Huggins-deGennes energy potential. This numerical scheme with unconditional energy stability is based on the Backward Differentiation Formula (BDF) method time derivation combining with Douglas-Dupont regularization term. In addition, we present a point-wise bound of the numerical solution for the proposed scheme in the theoretical level. For the convergent analysis, we treat three nonlinear logarithmic terms as a whole and deal with all logarithmic terms directly by using the property that the nonlinear error inner product is always non-negative. Moreover, we present the detailed convergent analysis in $ell^infty (0,T; H_h^{-1}) cap ell^2 (0,T; H_h^1)$ norm. At last, we use the local Newton approximation and multigrid method to solve the nonlinear numerical scheme, and various numerical results are presented, including the numerical convergence test, positivity-preserving property test, spinodal decomposition, energy dissipation and mass conservation properties.
We present a second-order-in-time finite difference scheme for the Cahn-Hilliard-Hele-Shaw equations. This numerical method is uniquely solvable and unconditionally energy stable. At each time step, this scheme leads to a system of nonlinear equation s that can be efficiently solved by a nonlinear multigrid solver. Owing to the energy stability, we derive an $ell^2 (0,T; H_h^3)$ stability of the numerical scheme. To overcome the difficulty associated with the convection term $ abla cdot (phi boldsymbol{u})$, we perform an $ell^infty (0,T; H_h^1)$ error estimate instead of the classical $ell^infty (0,T; ell^2)$ one to obtain the optimal rate convergence analysis. In addition, various numerical simulations are carried out, which demonstrate the accuracy and efficiency of the proposed numerical scheme.
We analyze a fully discrete finite element numerical scheme for the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty associated with the coupling between the Cahn-Hi lliard equation and the fluid motion, we make use of the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn would greatly improve the computational efficiency. The unique solvability and the energy stability have been proved in~cite{CHW2017}. In this work, we carry out a detailed convergence analysis and error estimate for the fully discrete finite element scheme, so that the optimal rate convergence order is established in the energy norm, i.e.,, in the $ell^infty (0, T; H^1) cap ell^2 (0, T; H^2)$ norm for the phase variables, as well as in the $ell^infty (0, T; H^1) cap ell^2 (0, T; H^2)$ norm for the velocity variable. Such an energy norm error estimate leads to a cancellation of a nonlinear error term associated with the convection part, which turns out to be a key step to pass through the analysis. In addition, a discrete $ell^2 (0;T; H^3)$ bound of the numerical solution for the phase variables plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo-Nirenberg inequality in the finite element setting.
In this paper, we develop a first order (in time) numerical scheme for the binary fluid surfactant phase field model. The free energy contains a double-well potential, a nonlinear coupling entropy and a Flory-Huggins potential. The resulting coupled system consists of two Cahn-Hilliard type equations. This system is solved numerically by finite difference spatial approximation, in combination with convex splitting temporal discretization. We prove the proposed scheme is unique solvable, positivity-preserving and unconditionally energy stable. In addition, an optimal rate convergence analysis is provided for the proposed numerical scheme, which will be the first such result for the binary fluid-surfactant system. Newton iteration is used to solve the discrete system. Some numerical experiments are performed to validate the accuracy and energy stability of the proposed scheme.
In this article, we present and analyze a finite element numerical scheme for a three-component macromolecular microsphere composite (MMC) hydrogel model, which takes the form of a ternary Cahn-Hilliard-type equation with Flory-Huggins-deGennes energ y potential. The numerical approach is based on a convex-concave decomposition of the energy functional in multi-phase space, in which the logarithmic and the nonlinear surface diffusion terms are treated implicitly, while the concave expansive linear terms are explicitly updated. A mass lumped finite element spatial approximation is applied, to ensure the positivity of the phase variables. In turn, a positivity-preserving property can be theoretically justified for the proposed fully discrete numerical scheme. In addition, unconditional energy stability is established as well, which comes from the convexity analysis. Several numerical simulations are carried out to verify the accuracy and positivity-preserving property of the proposed scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا