ترغب بنشر مسار تعليمي؟ اضغط هنا

How Sublimation Delays the Onset of Dusty Debris Disk Formation Around White Dwarf Stars

83   0   0.0 ( 0 )
 نشر من قبل Jordan Steckloff
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although numerous white dwarf stars host dusty debris disks, the temperature distribution of these stars differs significantly from the white dwarf population as a whole. Dusty debris disks exist exclusively around white dwarfs cooler than 27,000 K. This is all the more enigmatic given that the formation processes of dusty debris disks should favor younger, hotter white dwarfs, which likely host more dynamically unstable planetary systems. Here we apply a sophisticated material sublimation model to white dwarf systems to show that these statistics are actually a natural result of the interplay of thermal and tidal forces, and show how they define the circumstellar regions where dusty debris disks can form. We demonstrate that these processes tend to prevent stability against both sublimative destruction and reaccretion into planetesimals for rocky materials until white dwarfs cool to below ~25,000-32,000 K, in agreement with the observed limit of ~27,000 K. For pure water ice, this critical temperature is less than 2,700 K (requiring a cooling age older the universe); this precludes pure water ice-rich debris disks forming through the accepted two-step mechanism. The critical temperature is size-dependent; more massive white dwarfs could potentially host dusty debris disks at warmer temperatures. Our model suggests that the location of the disks within the PG 0010+280, GD 56, GD 362, and PG 1541+651 systems are consistent with a forsterite-dominated olivine composition. We also find that very cool white dwarfs may simultaneously host multiple, independently formed dusty debris disks, consistent with observations of the LSPM J0207+3331 system.

قيم البحث

اقرأ أيضاً

73 - J. Farihi 2016
Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have b een produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.
Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4min periodic var iation in the strength and shape of the CaII emission line profiles originating from the debris disc around the white dwarf SDSSJ122859.93+104032.9. We interpret this short-period signal as the signature of a solid body held together by its internal strength.
We have obtained a full suite of Spitzer observations to characterize the debris disk around HR 8799 and to explore how its properties are related to the recently discovered set of three massive planets orbiting the star. We distinguish three compone nts to the debris system: (1) warm dust (T ~150 K) orbiting within the innermost planet; (2) a broad zone of cold dust (T ~45 K) with a sharp inner edge, orbiting just outside the outermost planet and presumably sculpted by it; and (3) a dramatic halo of small grains originating in the cold dust component. The high level of dynamical activity implied by this halo may arise due to enhanced gravitational stirring by the massive planets. The relatively young age of HR 8799 places it in an important early stage of development and may provide some help in understanding the interaction of planets and planetary debris, an important process in the evolution of our own solar system.
The photospheres of some white dwarfs are polluted by accretion of material from their surrounding planetary debris. White dwarfs with dust disks are often heavily polluted and high-resolution spectroscopic observations of these systems can be used t o infer the chemical compositions of extrasolar planetary material. Here, we report spectroscopic observation and analysis of 19 white dwarfs with dust disks or candidate disks. The overall abundance pattern very much resembles that of bulk Earth and we are starting to build a large enough sample to probe a wide range of planetary compositions. We found evidence for accretion of Fe-rich material onto two white dwarfs as well as O-rich but H-poor planetary debris onto one white dwarf. In addition, there is a spread in Mg/Ca and Si/Ca ratios and it cannot be explained by differential settling or igneous differentiation. The ratios appear to follow an evaporation sequence. In this scenario, we can constrain the mass and number of evaporating bodies surrounding polluted white dwarfs.
We present follow-up photometry and spectroscopy of ZTF J0328$-$1219 strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high speed photometry fro m various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with $M_{star} = 0.731 pm 0.023,M_{odot}$, $T_{mathrm{eff}} = 7630 pm 140,$K, and $mathrm{[Ca/He]}=-9.55pm0.12$. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities $21.4pm1.0$ km s$^{-1}$ blue-shifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400K to 600K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا