ﻻ يوجد ملخص باللغة العربية
This paper explores two topics at once: the use of denotational semantics to bound the evaluation length of functional programs, and the semantics of strong (that is, possibly under abstractions) call-by-value evaluation. About the first, we analyze de Carvalhos seminal use of relational semantics for bounding the evaluation length of lambda-terms, starting from the presentation of the semantics as an intersection types system. We focus on the part of his work which is usually neglected in its many recent adaptations, despite being probably the conceptually deeper one: how to transfer the bounding power from the type system to the relational semantics itself. We dissect this result and re-understand it via the isolation of a simpler size representation property. About the second, we use relational semantics to develop a semantical study of strong call-by-value evaluation, which is both a delicate and neglected topic. We give a semantic characterization of terms normalizable with respect to strong evaluation, providing in particular the first result of adequacy with respect to strong call-by-value. Moreover, we extract bounds about strong evaluation from both the type systems and the relational semantics. Essentially, we use strong call-by-value to revisit de Carvalhos semantic bounds, and de Carvalhos technique to provide semantical foundations for strong call-by-value.
Whether the number of beta-steps in the lambda-calculus can be taken as a reasonable time cost model (that is, polynomially related to the one of Turing machines) is a delicate problem, which depends on the notion of evaluation strategy. Since the ni
We provide a sound and relatively complete Hoare-like proof system for reasoning about partial correctness of recursive procedures in presence of local variables and the call-by-value parameter mechanism, and in which the correctness proofs are linea
This paper studies useful sharing, which is a sophisticated optimization for lambda-calculi, in the context of call-by-need evaluation in presence of open terms. Useful sharing turns out to be harder to manipulate in call-by-need than in call-by-name
We examine the relationship between the algebraic lambda-calculus, a fragment of the differential lambda-calculus and the linear-algebraic lambda-calculus, a candidate lambda-calculus for quantum computation. Both calculi are algebraic: each one is e
In each variant of the lambda-calculus, factorization and normalization are two key-properties that show how results are computed. Instead of proving factorization/normalization for the call-by-name (CbN) and call-by-value (CbV) variants separately,