ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrally peaked proton beams shock accelerated from an optically shaped overdense gas jet by a near-infrared laser

165   0   0.0 ( 0 )
 نشر من قبل George Hicks
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the generation of impurity-free proton beams from an overdense gas jet driven by a near-infrared laser ($lambda_L=1.053$ $mathrm{mu} m$). The gas profile was shaped prior to the interaction using a controlled prepulse. Without this optical shaping, a 30$pm$4 nCsr$^{-1}$ thermal spectrum was detected transversely to the laser propagation direction with a high energy 8.27$pm$7 MeV, narrow energy spread (6$pm$2 %) bunch containing 45$pm$7 pCsr$^{-1}$. In contrast, with optical shaping the radial component was not detected and instead forward going protons were detected with energy 1.32$pm$2 MeV, 12.9$pm$3 % energy spread, and charge 400$pm$30 pCsr$^{-1}$. Both the forward going and radial narrow energy spread features are indicative of collisionless shock acceleration of the protons.



قيم البحث

اقرأ أيضاً

High energy ion beams (> MeV) generated by intense laser pulses promise to be viable alternatives to conventional ion beam sources due to their unique properties such as high charge, low emittance, compactness and ease of beam delivery. Typically the acceleration is due to the rapid expansion of a laser heated solid foil, but this usually leads to ion beams with large energy spread. Until now, control of the energy spread has only been achieved at the expense of reduced charge and increased complexity. Radiation pressure acceleration (RPA) provides an alternative route to producing laser-driven monoenergetic ion beams. In this paper, we show the interaction of an intense infrared laser with a gaseous hydrogen target can produce proton spectra of small energy spread (~ 4%), and low background. The scaling of proton energy with the ratio of intensity over density (I/n) indicates that the acceleration is due to the shock generated by radiation-pressure driven hole-boring of the critical surface. These are the first high contrast mononenergetic beams that have been theorised from RPA, and makes them highly desirable for numerous ion beam applications.
Spectrally-peaked proton beams ($E_{p}approx 8$ MeV, $Delta Eapprox 4$ MeV) have been observed from the interaction of an intense laser ($> 10^{19 }$ Wcm$^{-2}$) with ultrathin CH foils, as measured by spectrally-resolved full beam profiles. These be ams are reproducibly generated for foil thicknesses (5-100 nm), and exhibit narrowing divergence with decreasing target thickness down to $approx 8^circ$ for 5 nm. Simulations demonstrate that the narrow energy spread feature is a result of buffered acceleration of protons. Due to their higher charge-to-mass ratio, the protons outrun a carbon plasma driven in the relativistic transparency regime.
168 - C. Labaune 2013
The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. R elaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
357 - O. Tresca , N. P. Dover , N. Cook 2015
We report on reproducible shock acceleration from irradiation of a $lambda = 10$ $mu$m CO$_2$ laser on optically shaped H$_2$ and He gas targets. A low energy laser prepulse ($Ilesssim10^{14}, {rm Wcm^{-2}}$) was used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This was followed, after 25 ns, by a high intensity laser pulse ($I>10^{16}, {rm Wcm^{-2}}$) that produces an electrostatic collisionless shock. Upstream ions were accelerated for a narrow range of prepulse energies ($> 110$ mJ & $< 220$mJ). For long density gradients ($gtrsim 40 mu$m), broadband beams of He$^+$ and H$^+$ were routinely produced, whilst for shorter gradients ($lesssim 20 mu$m), quasimonoenergetic acceleration of proton was observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D PIC simulations.
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petaw att lasers, proton beams with energy ~ 50 MeV and ~ 80 % polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators, and have potential application to enable effective detection in explorations of quantum chromodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا