ﻻ يوجد ملخص باللغة العربية
We consider the unital associative algebra $mathcal{A}$ with two generators $mathcal{X}$, $mathcal{Z}$ obeying the defining relation $[mathcal{Z},mathcal{X}]=mathcal{Z}^2+Delta$. We construct irreducible tridiagonal representations of $mathcal{A}$. Depending on the value of the parameter $Delta$, these representations are associated to the Jacobi matrices of the para-Krawtchouk, continuous Hahn, Hahn or Jacobi polynomials.
We present a simple construction for a tridiagonal matrix $T$ that commutes with the hopping matrix for the entanglement Hamiltonian ${cal H}$ of open finite free-Fermion chains associated with families of discrete orthogonal polynomials. It is based
The Riemann-Hilbert problems for multiple orthogonal polynomials of types I and II are used to derive string equations associated to pairs of Lax-Orlov operators. A method for determining the quasiclassical limit of string equations in the phase spac
It is pointed out that, for the fractional Fokker-Planck equation for subdiffusion proposed by Metzler, Barkai, and Klafter [Phys. Rev. Lett. 82 (1999) 3563], there are four types of infinitely many exact solutions associated with the newly discovere
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jac
We obtain asymptotics in n for the n-dimensional Hankel determinant whose symbol is the Gaussian multiplied by a step-like function. We use Riemann-Hilbert analysis of the related system of orthogonal polynomials to obtain our results.