ﻻ يوجد ملخص باللغة العربية
This paper identifies convolutional codes (CCs) used in conjunction with a CC-specific cyclic redundancy check (CRC) code as a promising paradigm for short blocklength codes. The resulting CRC-CC concatenated code naturally permits the use of the serial list Viterbi decoding (SLVD) to achieve maximum-likelihood decoding. The CC of interest is of rate-$1/omega$ and is either zero-terminated (ZT) or tail-biting (TB). For CRC-CC concatenated code designs, we show how to find the optimal CRC polynomial for a given ZTCC or TBCC. Our complexity analysis reveals that SLVD decoding complexity is a function of the terminating list rank, which converges to one at high SNR. This behavior allows the performance gains of SLVD to be achieved with a small increase in average complexity at the SNR operating point of interest. With a sufficiently large CC constraint length, the performance of CRC-CC concatenated code under SLVD approaches the random-coding union (RCU) bound as the CRC size is increased while average decoding complexity does not increase significantly. TB encoding further reduces the backoff from the RCU bound by avoiding the termination overhead. As a result, several CRC-TBCC codes outperform the RCU bound at moderate SNR values while permitting decoding with relatively low complexity.
In this letter, we explore the performance limits of short polar codes and find that the maximum likelihood (ML) performance of a simple CRC-polar concatenated scheme can approach the finite blocklength capacity. Then, in order to approach the ML per
This paper studies the joint design of optimal convolutional codes (CCs) and CRC codes when serial list Viterbi algorithm (S-LVA) is employed in order to achieve the target frame error rate (FER). We first analyze the S-LVA performance with respect t
Turbo codes and CRC codes are usually decoded separately according to the serially concatenated inner codes and outer codes respectively. In this letter, we propose a hybrid decoding algorithm of turbo-CRC codes, where the outer codes, CRC codes, are
A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate $Rin[0,1]$. An efficient interpolation-based decoding algorithm for t
Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). L