ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-broadband mid-infrared emission from Pr$^{3+}$/Dy$^{3+}$ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement

44   0   0.0 ( 0 )
 نشر من قبل Slawomir Sujecki
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution, a comprehensive experimental study of photoluminescence from Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber samples is discussed. The selenide-chalcogenide multimode fiber samples co-doped with 500 ppm of Pr3+ ions and 500 ppm of Dy3+ ions are prepared using conventional melt-quenching. The main objective of the study is the analysis of the pumping wavelength selection on the shape of the output spectrum. For this purpose, the Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber samples are illuminated at one end using pump lasers operating at the wavelengths of 1320 nm , 1511 nm and 1700 nm. The results obtained show that the Pr3+/Dy3+ ion co-doped selenide-chalcogenide multimode fiber emits photoluminescence spanning from 2000 nm to 6000 nm. Also it is demonstrated that, by varying the output power and wavelength of the pump sources, the spectral shape of the emitted luminescence can be modified to either reduce or enhance the contribution of radiation within a particular wavelength band. The presented results confirm that Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber is a good candidate for the realization of broadband spontaneous emission fiber sources with shaped output spectrum for the mid-infrared wavelength region.


قيم البحث

اقرأ أيضاً

We perform a numerical analysis of mid-infrared photoluminescence emitted by praseodymium (III) doped chalcogenide selenide glass pumped at near-infrared wavelengths. The results obtained show that an effective inversion of level populations can be a chieved using both 1480 nm and 1595 nm laser diodes. The rate of the spontaneous emission achieved when pumping at 1480 nm and 1595 nm is comparable to this achieved using the standard pumping wavelength of 2040 nm.
In this contribution a numerical model is developed to study the time dynamics of photoluminescence emitted by Tb3+ doped multimode chalcogenide-selenide glass fibers pumped by laser light at approximately 2 microns. The model consists of a set of pa rtial differential equations (PDEs), which describe the temporal and spatial evolution of the photon density and level populations within the fiber. In order to solve numerically the PDEs a Method of Lines is applied. The modeling parameters are extracted from measurements and from data available in the literature. The numerical results obtained support experimental observations. In particular, the developed model reproduces the discrepancies that are observed between the photoluminescence decay curves obtained from different points along the fiber. The numerical analysis is also used to explain the source of these discrepancies.
In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-in frared region. The PM fiber was drawn using the casting method from As38Se62 glass which features a transmission window from 2 to 10 $mu m$ and a high nonlinear index of 1.13.10$^{-17}$m$^{2}$W$^{-1}$. It has a zero-dispersion wavelength around 4.5 $mu m$ and, at this wavelength, a large birefringence of 6.10$^{-4}$ and consequently strong polarization maintaining properties are expected. Using this fiber, we experimentally demonstrate supercontinuum generation spanning from 3.1-6.02 $mu m$ and 3.33-5.78 $mu m$ using femtosecond pumping at 4 $mu m$ and 4.53 $mu m$, respectively. We further investigate the supercontinuum bandwidth versus the input pump polarization angle and we show very good agreement with numerical simulations of the two-polarization model based on two coupled generalized nonlinear Schrodinger equations.
We demonstrate the generation of a low-noise, octave-spanning mid-infrared supercontinuum from 1700 to 4800 nm by injecting femtosecond pulses into the normal dispersion regime of a multimode step-index chalcogenide fiber with 100 $mu$m core diameter . We conduct a systematic study of the intensity noise across the supercontinuum spectrum and show that the initial fluctuations of the pump laser are at most amplified by a factor of three. We also perform a comparison with the noise characteristics of an octave-spanning supercontinuum generated in the anomalous dispersion regime of a multimode fluoride fiber with similar core size and show that the all-normal dispersion supercontinuum in the multimode chalcogenide fiber has superior noise characteristics. Our results open up novel perspective for many practical applications such as long-distance remote sensing where high power and low noise are paramount.
We theoretically investigate the preparation of mid-infrared (MIR) spectrally-uncorrelated biphotons from a spontaneous parametric down-conversion process using doped LN crystals, including MgO doped LN, ZnO doped LN, and In2O3 doped ZnLN with doping ratio from 0 to 7 mol%. The tilt angle of the phase-matching function and the corresponding poling period are calculated under type-II, type-I, and type-0 phase-matching conditions. We also calculate the thermal properties of the doped LN crystals and their performance in Hong-Ou-Mandel interference. It is found that the doping ratio has a substantial impact on the group-velocity-matching (GVM) wavelengths. Especially, the GVM2 wavelength of co-doped InZnLN crystal has a tunable range of 678.7 nm, which is much broader than the tunable range of less than 100 nm achieved by the conventional method of adjusting the temperature. It can be concluded that the doping ratio can be utilized as a degree of freedom to manipulate the biphoton state. The spectrally uncorrelated biphotons can be used to prepare pure single-photon source and entangled photon source, which may have promising applications for quantum-enhanced sensing, imaging, and communications at the MIR range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا