ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating neutron transfer in the $^{9}$Be + $^{197}$Au system

148   0   0.0 ( 0 )
 نشر من قبل Pushpendra P Singh Dr
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work $textit{n}$-transfer and incomplete fusion cross sections for $^{9}$Be + $^{197}$Au system are reported over a wide energy range, E$_{c.m.}$ $approx$ 29-45 MeV. The experiment was carried out using activation technique and off-line gamma counting. The transfer process is found to be the dominant mode as compared to all other reaction channels. Detailed coupled reaction channel (CRC) calculations have been performed for $textit{n}$-transfer stripping and pickup cross sections. The measured 1$textit{n}$-stripping cross sections are explained with CRC calculations by including the ground state and the 2$^{+}$ resonance state (E = 3.03 MeV) of $^{8}$Be. The calculations for 1$textit{n}$-pickup, including only the ground state of $^{10}$Be agree reasonably well with the measured cross sections, while it overpredicts the data at subbarrier energies. For a better insight into the role of projectile structure in the transfer process, a comprehensive analysis of 1$textit{n}$-stripping reaction has been carried out for various weakly bound projectiles on $^{197}$Au target nucleus. The transfer cross sections scaled with the square of total radius of interacting nuclei show the expected Q-value dependence of 1$textit{n}$-stripping channel for weakly bound stable projectiles.

قيم البحث

اقرأ أيضاً

110 - G. S. Li , J. G. Wang , J. Lubian 2019
The cross sections of complete fusion and incomplete fusion for the $ ^{9} $Be + $ ^{197} $Au system, at energies not too much above the Coulomb barrier, were measured for the first time. The online activation followed by offline $gamma$-ray spectros copy method was used for the derivation of the cross sections. A slightly higher value of ICF/TF ratio has been observed, compared to other systems reported in the literature with $ ^{9} $Be beam. The experimental data were compared with coupled channel calculations without taking into account the coupling of the breakup channel, and experimental data of other reaction systems with weakly bound projectiles. A complete fusion suppression of about 40% was found for the $ ^{9} $Be + $ ^{197} $Au system, at energies above the barrier, whereas the total fusion cross sections are in agreement with the calculations.
To probe the role of the intrinsic structure of the projectile on sub-barrier fusion, measurement of fusion cross sections has been carried out in $^{9}$Be + $^{197}$Au system in the energy range E$_{c.m.}$/V$_B$ $approx$ 0.82 to 1.16 using off-beam gamma counting method. Measured fusion excitation function has been analyzed in the framework of the coupled-channel approach using CCFULL code. It is observed that the coupled-channel calculations, including couplings to the inelastic state of the target and the first two states of the rotational band built on the ground state of the projectile, provide a very good description of the sub-barrier fusion data. At above barrier energies, the fusion cross section is found to be suppressed by $approx$ 39(2)% as compared to the coupled-channel prediction. A comparison of reduced excitation function of $^{9}$Be + $^{197}$Au with other $x$ + $^{197}$Au shows a larger enhancement for $^9$Be in the sub-barrier region amongst Z=2-5 weakly and tightly bound projectiles, which indicates the prominent role of the projectile deformation in addition to the weak binding.
62 - V. Jha , V. V. Parkar , S. Kailas 2014
The role of the breakup process and one neutron stripping on the near barrier fusion are investigated for the weakly bound projectile $^{9}$Be on $^{28}$Si, $^{89}$Y, $^{124}$Sn, $^{144}$Sm and $^{208}$Pb targets. Continuum-discretized coupled channe ls (CDCC) calculations for the breakup with a $^{8}$Be + n model of the $^{9}$Be nucleus and coupled reactions channels (CRC) calculations for the one neutron stripping to several single particle states in the target are performed for these systems. A good description of the experimental fusion cross sections above the Coulomb barrier is obtained from the CDCC-CRC calculations for all the systems. The calculated incomplete fusion probabilities for different target systems are found to be consistent with the systematic behaviour of the complete fusion suppression factors as a function of target atomic mass, obtained from the experimental data.
Fusion excitation function of $^{35}$Cl + $^{130}$Te system is measured in the energy range around the Coulomb barrier and analyzed in the framework of the coupled-channels approach. The role of projectile deformation, nuclear structure, and the coup lings of inelastic excitations and positive Q$-$value neutron transfer channels in sub-barrier fusion are investigated through the comparison of reduced fusion excitation functions of $^{35,37}$Cl +$^{130}$Te systems. The reduced fusion excitation function of $^{35}$Cl + $^{130}$Te system shows substantial enhancement over $^{37}$Cl + $^{130}$Te system in sub-barrier energy region which is attributed to the presence of positive Q-value neutron transfer channels in $^{35}$Cl + $^{130}$Te system. Findings of this work strongly suggest the importance of +2$n$ - transfer coupling in sub-barrier fusion apart from the simple inclusion of inelastic excitations of interacting partners, and are in stark contrast with the results presented by Kohley textit{et al.}, [Phys. Rev. Lett. 107, 202701 (2011)].
The measured inclusive $^6$He and $^4$He production cross sections of G. Marqu{i}nez-Dur{a}n {em et al.}, Phys. Rev. C {bf 98}, 034615 (2018) are reexamined and the conclusions concerning the relative importance of 1n and 2n transfer to the productio n of $^6$He arising from the interaction of a 22 MeV $^8$He beam with a $^{208}$Pb target revised. A consideration of the kinematics of the 2n-stripping reaction when compared with the measured $^6$He total energy versus angle spectrum places strict limits on the allowed excitation energy of the $^{210}$Pb residual, so constraining distorted wave Born approximation calculations that the contribution of the 2n stripping process to the inclusive $^6$He production can only be relatively small. It is therefore concluded that the dominant $^6$He production mechanism must be 1n stripping followed by decay of the $^7$He ejectile. Based on this result we present strong arguments in favor of direct, one step four-neutron (4n) stripping as the main mechanism for $^4$He production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا