ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication

121   0   0.0 ( 0 )
 نشر من قبل Jared Asuncion
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Jared Asuncion




اسأل ChatGPT حول البحث

Let $K$ be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the classfields obtained by complex multiplication of abelian varieties, Shimura considered a particular family ${F_K(m) : m in mathbb{Z} >0 }$ of abelian extensions of $K$, and showed that the Hilbert class field $H_K$ of $K$ is contained in $F_K(m)$ for some positive integer m. We make this m explicit. We then give an algorithm that computes a set of defining polynomials for the Hilbert class field using the field $F_K(m)$. Our proof-of-concept implementation of this algorithm computes a set of defining polynomials much faster than current implementations of the generic Kummer algorithm for certain examples of quartic CM fields.



قيم البحث

اقرأ أيضاً

Bruinier and Yang conjectured a formula for an intersection number on the arithmetic Hilbert modular surface, CM(K).T_m, where CM(K) is the zero-cycle of points corresponding to abelian surfaces with CM by a primitive quartic CM field K, and T_m is t he Hirzebruch-Zagier divisors parameterizing products of elliptic curves with an m-isogeny between them. In this paper, we examine fields not covered by Yangs proof of the conjecture. We give numerical evidence to support the conjecture and point to some interesting anomalies. We compare the conjecture to both the denominators of Igusa class polynomials and the number of solutions to the embedding problem stated by Goren and Lauter.
228 - Jianing Li , Songsong Li , 2021
Let $D$ be a negative integer congruent to $0$ or $1bmod{4}$ and $mathcal{O}=mathcal{O}_D$ be the corresponding order of $ K=mathbb{Q}(sqrt{D})$. The Hilbert class polynomial $H_D(x)$ is the minimal polynomial of the $j$-invariant $ j_D=j(mathbb{C}/m athcal{O})$ of $mathcal{O}$ over $K$. Let $n_D=(mathcal{O}_{mathbb{Q}( j_D)}:mathbb{Z}[ j_D])$ denote the index of $mathbb{Z}[ j_D]$ in the ring of integers of $mathbb{Q}(j_D)$. Suppose $p$ is any prime. We completely determine the factorization of $H_D(x)$ in $mathbb{F}_p[x]$ if either $p mid n_D$ or $p mid D$ is inert in $K$ and the $p$-adic valuation $v_p(n_D)leq 3$. As an application, we analyze the key space of Oriented Supersingular Isogeny Diffie-Hellman (OSIDH) protocol proposed by Col`o and Kohel in 2019 which is the roots set of the Hilbert class polynomial in $mathbb{F}_{p^2}$.
For certain real quadratic fields $K$ with sufficiently small discriminant we produce explicit unit generators for specific ray class fields of $K$ using a numerical method that arose in the study of complete sets of equiangular lines in $mathbb{C}^d $ (known in quantum information as symmetric informationally complete measurements or SICs). The construction in low dimensions suggests a general recipe for producing unit generators in infinite towers of ray class fields above arbitrary real quadratic $K$, and we summarise this in a conjecture. There are indications [19,20] that the logarithms of these canonical units are related to the values of $L$-functions associated to the extensions, following the programme laid out in the Stark Conjectures.
105 - Tonghai Yang , Hongbo Yin 2017
In this paper, we consider some CM fields which we call of dihedral type and compute the Artin $L$-functions associated to all CM types of these CM fields. As a consequence of this calculation, we see that the Colmez conjecture in this case is very c losely related to understanding the log derivatives of certain Hecke characters of real quadratic fields. Recall that the `abelian case of the Colmez conjecture, proved by Colmez himself, amounts to understanding the log derivatives of Hecke characters of $Q$ (cyclotomic characters). In this paper, we also prove that the Colmez conjecture holds for `unitary CM types of signature $(n-1, 1)$ and holds on average for `unitary CM types of a fixed CM number field of signature $(n-r, r)$.
Let $mathbb{F}_q$ be the finite field of $q=p^mequiv 1pmod 4$ elements with $p$ being an odd prime and $m$ being a positive integer. For $c, y inmathbb{F}_q$ with $yinmathbb{F}_q^*$ non-quartic, let $N_n(c)$ and $M_n(y)$ be the numbers of zeros of $x _1^4+...+x_n^4=c$ and $x_1^4+...+x_{n-1}^4+yx_n^4=0$, respectively. In 1979, Myerson used Gauss sum and exponential sum to show that the generating function $sum_{n=1}^{infty}N_n(0)x^n$ is a rational function in $x$ and presented its explicit expression. In this paper, we make use of the cyclotomic theory and exponential sums to show that the generating functions $sum_{n=1}^{infty}N_n(c)x^n$ and $sum_{n=1}^{infty}M_{n+1}(y)x^n$ are rational functions in $x$. We also obtain the explicit expressions of these generating functions. Our result extends Myersons theorem gotten in 1979.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا