ترغب بنشر مسار تعليمي؟ اضغط هنا

SAGE : A Monte Carlo Simulation Framework for Experiments with Germanium Detectors

139   0   0.0 ( 0 )
 نشر من قبل Ze She
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Geant4-based simulation framework for rare event searching experiments with germanium detectors named SAGE is presented with details. It is designed for simulating, assessing, analyzing background components and investigating the response of the germanium detectors. The SAGE framework incorporates its experiment-specific geometries and custom attributes, including the event generator, physical lists and output format, to satisfy various simulation objectives. Its docker image has been prepared for virtualizing and distributing the SAGE framework. Deployment a Geant4-based simulation will be convenient under this docker image. The implemented geometries include both the p-type point contact and broad energy germanium detectors with environmental surroundings, and these hierarchical geometries can be easily extended. Users select these custom attributes via the JSON configuration file. The aforementioned attributes satisfy the simulation demands and make SAGE become a generic and powerful simulation framework for CDEX experiment.



قيم البحث

اقرأ أيضاً

Germanium ionization detectors with sensitivities as low as 100 eVee (electron-equivalent energy) open new windows for studies on neutrino and dark matter physics. The relevant physics subjects are summarized. The detectors have to measure physics si gnals whose amplitude is comparable to that of pedestal electronic noise. To fully exploit this new detector technique, various experimental issues including quenching factors, energy reconstruction and calibration, signal triggering and selection as well as evaluation of their associated efficiencies have to be attended. The efforts and results of a research program to address these challenges are presented.
We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC ab initio simulates the energy loss of particles in all detector components and generates the resulting sc intillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics chain. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland-Zen, SNO+, and Juno.
66 - M. Antonello 2018
SABRE (Sodium-iodide with Active Background REjection) is a direct dark matter search experiment based on an array of radio-pure NaI(Tl) crystals surrounded by a liquid scintillator veto. Twin SABRE experiments in the Northern and Southern Hemisphere s will differentiate a dark matter signal from seasonal and local effects. The experiment is currently in a Proof-of-Principle (PoP) phase, whose goal is to demonstrate that the background rate is low enough to carry out an independent search for a dark matter signal, with sufficient sensitivity to confirm or refute the DAMA result during the following full-scale experimental phase. The impact of background radiation from the detector materials and the experimental site needs to be carefully investigated, including both intrinsic and cosmogenically activated radioactivity. Based on the best knowledge of the most relevant sources of background, we have performed a detailed Monte Carlo study evaluating the expected background in the dark matter search spectral region. The simulation model described in this paper guides the design of the full-scale experiment and will be fundamental for the interpretation of the measured background and hence for the extraction of a possible dark matter signal.
135 - B. Beltran , H. Bichsel , B. Cai 2011
The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar n eutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNOs third-phase 8B solar-neutrino measurement.
The goal of the textsc{Majorana} textsc{Demonstrator} project is to search for 0$ ubetabeta$ decay in $^{76}mathrm{Ge}$. Of all candidate isotopes for 0$ ubetabeta$, $^{76}mathrm{Ge}$ has some of the most favorable characteristics. Germanium detector s are a well established technology, and in searches for 0$ ubetabeta$, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the textsc{Majorana} collaboration made with enriched germanium detectors manufactured by ORTEC$^{circledR}$. The process from production, to characterization and integration in textsc{Majorana} mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا