ﻻ يوجد ملخص باللغة العربية
This paper presents a novel solution paradigm of general optimization under both exogenous and endogenous uncertainties. This solution paradigm consists of a probability distribution (PD)-free method of obtaining deterministic equivalents and an innovative approach of scenario reduction. First, dislike the existing methods that use scenarios sampled from pre-known PD functions, the PD-free method uses historical measurements of uncertain variables as input to convert the logical models into a type of deterministic equivalents called General Scenario Program (GSP). Our contributions to the PD-free deterministic equivalent construction reside in generalization (making it applicable to general optimization under uncertainty rather than just chance-constrained optimization) and extension (enabling it to the problems under endogenous uncertainty via developing an iterative and a non-iterative frameworks). Second, this paper reveals some unknown properties of the PD-free deterministic equivalent construction, such as the characteristics of active scenarios and repeated scenarios. Base on this discoveries, we propose a concept and methods of strategic scenario selection which can effectively reduce the required number of scenarios as demonstrated in both mathematical analysis and numerical experiments. Numerical experiments are conducted on two typical smart grid optimization problems under exogenous and endogenous uncertainties.
This paper addresses the issue of data injection attacks on control systems. We consider attacks which aim at maximizing system disruption while staying undetected in the finite horizon. The maximum possible disruption caused by such attacks is formu
This paper introduces HPIPM, a high-performance framework for quadratic programming (QP), designed to provide building blocks to efficiently and reliably solve model predictive control problems. HPIPM currently supports three QP types, and provides i
Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive
In this paper we propose a data-driven model for the spread of SARS-CoV-2 and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implementing non-phar
Small-scale Mixed-Integer Quadratic Programming (MIQP) problems often arise in embedded control and estimation applications. Driven by the need for algorithmic simplicity to target computing platforms with limited memory and computing resources, this