ترغب بنشر مسار تعليمي؟ اضغط هنا

Resurrecting Low-Mass Axion Dark Matter Via a Dynamical QCD Scale

311   0   0.0 ( 0 )
 نشر من قبل Fei Huang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework where the strong coupling is dynamical, the QCD sector may confine at a much higher temperature than it would in the Standard Model, and the temperature-dependent mass of the QCD axion evolves in a non-trivial way. We find that, depending on the evolution of $Lambda_{mathrm{QCD}}$, the axion field may undergo multiple distinct phases of damping and oscillation leading generically to a suppression of its relic abundance. Such a suppression could therefore open up a wide range of parameter space, resurrecting in particular axion dark-matter models with a large Peccei-Quinn scale $f_agg 10^{12}~mathrm{GeV}$, i.e., with a lighter mass than the standard QCD axion.

قيم البحث

اقرأ أيضاً

We investigate the possibility that the Peccei-Quinn phase transition occurs at a temperature far below the symmetry breaking scale. Low phase transition temperatures are typical in supersymmetric theories, where symmetry breaking fields have small m asses. We find that QCD axions are abundantly produced just after the phase transition. The observed dark matter abundance is reproduced even if the decay constant is much lower than $10^{11}$ GeV. The produced axions tend to be warm. For some range of the decay constant, the effect of the predicted warmness on structure formation can be confirmed by future observations of 21 cm lines. A portion of parameter space requires a mixing between the Peccei-Quinn symmetry breaking field and the Standard Model Higgs, and predicts an observable rate of rare Kaon decays.
We propose a multi-messenger probe of QCD axion Dark Matter based on observations of black hole-neutron star binary inspirals. It is suggested that a dense Dark Matter spike may grow around intermediate mass black holes ($10^{3}-10^{5} mathrm{,M_{odo t}}$). The presence of such a spike produces two unique effects: a distinct phase shift in the gravitational wave strain during the inspiral and an enhancement of the radio emission due to the resonant axion-photon conversion occurring in the neutron star magnetosphere throughout the inspiral and merger. Remarkably, the observation of the gravitational wave signal can be used to infer the Dark Matter density and, consequently, to predict the radio emission. We study the projected reach of the LISA interferometer and next-generation radio telescopes such as the Square Kilometre Array. Given a sufficiently nearby system, such observations will potentially allow for the detection of QCD axion Dark Matter in the mass range $10^{-7},mathrm{eV}$ to $10^{-5},mathrm{eV}$.
We propose a novel mechanism to suppress the isocurvature perturbations of the QCD axion. The point is that the QCD interactions become strong at an intermediate or high energy scale in the very early Universe, if the Higgs field has a sufficiently l arge expectation value. The effective QCD scale can be even higher in the presence of extra colored particles. We show that the QCD axion then becomes so heavy during inflation that its isocurvature perturbations are significantly suppressed, thereby relaxing the constraint on the inflation scale.
We investigate a non-supersymmetric $SO(10)times U(1)_{rm PQ}$ axion model in which the spontaneous breaking of $U(1)_{rm PQ}$ occurs after inflation, and the axion domain wall problem is resolved by employing the Lazarides-Shafi mechanism. This requ ires the introduction of two fermion 10-plets, such that the surviving discrete symmetry from the explicit $U(1)_{rm PQ}$ breaking by QCD instantons is reduced from $Z_{12}$ to $Z_4$, where $Z_4$ coincides with the center of $SO(10)$ (more precisely $Spin(10)$). An unbroken $Z_2$ subgroup of $Z_4$ yields intermediate scale topologically stable strings, as well as a stable electroweak doublet non-thermal dark matter candidate from the fermion 10-plets with mass comparable to or somewhat smaller than the axion decay constant $f_{rm a}$. We present an explicit realization with inflation taken into account and which also incorporates non-thermal leptogenesis. The fermion dark matter mass lies in the $3times 10^{8}-10^{10}~{rm GeV}$ range and its contribution to the relic dark matter abundance can be comparable to that from the axion.
Two of the most pressing questions in physics are the microscopic nature of the dark matter that comprises 84% of the mass in the universe and the absence of a neutron electric dipole moment. These questions would be resolved by the existence of a hy pothetical particle known as the quantum chromodynamics (QCD) axion. In this work, we probe the hypothesis that axions constitute dark matter, using the ABRACADABRA-10cm experiment in a broadband configuration, with world-leading sensitivity. We find no significant evidence for axions, and we present 95% upper limits on the axion-photon coupling down to the world-leading level $g_{agammagamma}<3.2 times10^{-11}$ GeV$^{-1}$, representing one of the most sensitive searches for axions in the 0.41 - 8.27 neV mass range. Our work paves a direct path for future experiments capable of confirming or excluding the hypothesis that dark matter is a QCD axion in the mass range motivated by String Theory and Grand Unified Theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا