ﻻ يوجد ملخص باللغة العربية
Conformal geodesics are solutions to a system of third order of equations, which makes a Lagrangian formulation problematic. We show how enlarging the class of allowed variations leads to a variational formulation for this system with a third--order conformally invariant Lagrangian. We also discuss the conformally invariant system of fourth order ODEs arising from this Lagrangian, and show that some of its integral curves are spirals.
We study the integrability of the conformal geodesic flow (also known as the conformal circle flow) on the $SO(3)$--invariant gravitational instantons. On a hyper--Kahler four--manifold the conformal geodesic equations reduce to geodesic equations of
In this paper, we prove that lightlike geodesics of a pseudo-Finsler manifold and its focal points are preserved up to reparametrization by anisotropic conformal changes, using the Chern connection and the anisotropic calculus and the fact that geode
We prove that the geodesic equation for any semi-Riemannian metric of regularity $C^{0,1}$ possesses $C^1$-solutions in the sense of Filippov.
Some well-known Lorentzian concepts are transferred into the more general setting of cone structures, which provide both the causality of the spacetime and the notion of cone geodesics without making use of any metric. Lightlike hypersurfaces are def
The vacuum state -- or any other state of finite energy -- is not an eigenstate of any smeared (averaged) local quantum field. The outcomes (spectral values) of repeated measurements of that averaged local quantum field are therefore distributed acco