ﻻ يوجد ملخص باللغة العربية
Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $>5$ kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.
Understanding the transport of energetic cosmic rays belongs to the most challenging topics in astrophysics. Diffusion due to scattering by electromagnetic fluctuations is a key process in cosmic-ray transport. The transition from a ballistic to a di
We have performed magnetohydrodynamical simulations to study the amplification of magnetic fields in the precursors of shock waves. Strong magnetic fields are required in the precursors of the strong shocks that occur in supernova remnants. Observati
As the fundamental physical process with many astrophysical implications, the diffusion of cosmic rays (CRs) is determined by their interaction with magnetohydrodynamic (MHD) turbulence. We consider the magnetic mirroring effect arising from MHD turb
This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free p
The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind