ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph-Theoretic Framework for Self-Testing in Bell Scenarios

70   0   0.0 ( 0 )
 نشر من قبل Kishor Bharti Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely, with minimal assumptions about the underlying quantum system. It is based on the observation that some extremal points in the set of quantum correlations can only be achieved, up to isometries, with specific states and measurements. Here, we present a new approach for quantum self-testing in Bell non-locality scenarios, motivated by the following observation: the quantum maximum of a given Bell inequality is, in general, difficult to characterize. However, it is strictly contained in an easy-to-characterize set: the emph{theta body} of a vertex-weighted induced subgraph $(G,w)$ of the graph in which vertices represent the events and edges join mutually exclusive events. This implies that, for the cases where the quantum maximum and the maximum within the theta body (known as the Lovasz theta number) of $(G,w)$ coincide, self-testing can be demonstrated by just proving self-testability with the theta body of $G$. This graph-theoretic framework allows us to (i) recover the self-testability of several quantum correlations that are known to permit self-testing (like those violating the Clauser-Horne-Shimony-Holt (CHSH) and three-party Mermin Bell inequalities for projective measurements of arbitrary rank, and chained Bell inequalities for rank-one projective measurements), (ii) prove the self-testability of quantum correlations that were not known using existing self-testing techniques (e.g., those violating the Abner Shimony Bell inequality for rank-one projective measurements). Additionally, the analysis of the chained Bell inequalities gives us a closed-form expression of the Lovasz theta number for a family of well-studied graphs known as the Mobius ladders, which might be of independent interest in the community of discrete mathematics.



قيم البحث

اقرأ أيضاً

Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simpl e and intuitive construction of Bell inequalities that are maximally violated by the multiqubit graph states and can be used for their robust self-testing. The main advantage of our inequalities over previous constructions for these states lies in the fact that the number of correlations they contain scales only linearly with the number of observers, which presents a significant reduction of the experimental effort needed to violate them. We also discuss possible generalizations of our approach by showing that it is applicable to entangled states whose stabilizers are not simply tensor products of Pauli matrices.
Classical and quantum physics provide fundamentally different predictions about experiments with separate observers that do not communicate, a phenomenon known as quantum nonlocality. This insight is a key element of our present understanding of quan tum physics, and also enables a number of information processing protocols with security beyond what is classically attainable. Relaxing the pivotal assumption of no communication leads to new insights into the nature quantum correlations, and may enable new applications where security can be established under less strict assumptions. Here, we study such relaxations where different forms of communication are allowed. We consider communication of inputs, outputs, and of a message between the parties. Using several measures, we study how much communication is required for classical models to reproduce quantum or general no-signalling correlations, as well as how quantum models can be augmented with classical communication to reproduce no-signalling correlations.
178 - Yanmin Yang , Zhu-Jun Zheng 2017
In recent papers, the theory of representations of finite groups has been proposed to analyzing the violation of Bell inequalities. In this paper, we apply this method to more complicated cases. For two partite system, Alice and Bob each make one of $d$ possible measurements, each measurement has $n$ outcomes. The Bell inequalities based on the choice of two orbits are derived. The classical bound is only dependent on the number of measurements $d$, but the quantum bound is dependent both on $n$ and $d$. Even so, when $d$ is large enough, the quantum bound is only dependent on $d$. The subset of probabilities for four parties based on the choice of six orbits under group action is derived and its violation is described. Restricting the six orbits to three parties by forgetting the last party, and guaranteeing the classical bound invariant, the Bell inequality based on the choice of four orbits is derived. Moreover, all the corresponding nonlocal games are analyzed.
Resource theories provide a general framework for the characterization of properties of physical systems in quantum mechanics and beyond. Here, we introduce methods for the quantification of resources in general probabilistic theories (GPTs), focusin g in particular on the technical issues associated with infinite-dimensional state spaces. We define a universal resource quantifier based on the robustness measure, and show it to admit a direct operational meaning: in any GPT, it quantifies the advantage that a given resource state enables in channel discrimination tasks over all resourceless states. We show that the robustness acts as a faithful and strongly monotonic measure in any resource theory described by a convex and closed set of free states, and can be computed through a convex conic optimization problem. Specializing to continuous-variable quantum mechanics, we obtain additional bounds and relations, allowing an efficient computation of the measure and comparison with other monotones. We demonstrate applications of the robustness to several resources of physical relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence. In particular, we establish exact expressions for various classes of states, including Fock states and squeezed states in the resource theory of nonclassicality and general pure states in the resource theory of entanglement, as well as tight bounds applicable in general cases.
For an even qudit dimension $dgeq 2,$ we introduce a class of two-qudit states exhibiting perfect correlations/anticorrelations and prove via the generalized Gell-Mann representation that, for each two-qudit state from this class, the maximal violati on of the original Bell inequality is bounded from above by the value $3/2$ - the upper bound attained on some two-qubit states. We show that the two-qudit Greenberger-Horne-Zeilinger (GHZ) state with an arbitrary even $dgeq 2$ exhibits perfect correlations/anticorrelations and belongs to the introduced two-qudit state class. These new results are important steps towards proving in general the $frac{3}{2}$ upper bound on quantum violation of the original Bell inequality. The latter would imply that similarly as the Tsirelson upper bound $2sqrt{2}$ specifies the quantum analog of the CHSH inequality for all bipartite quantum states, the upper bound $frac{3}{2}$ specifies the quantum analog of the original Bell inequality for all bipartite quantum states with perfect correlations/ anticorrelations. Possible consequences for the experimental tests on violation of the original Bell inequality are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا