ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Parametric Few-Shot Learning for Word Sense Disambiguation

89   0   0.0 ( 0 )
 نشر من قبل Howard Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Word sense disambiguation (WSD) is a long-standing problem in natural language processing. One significant challenge in supervised all-words WSD is to classify among senses for a majority of words that lie in the long-tail distribution. For instance, 84% of the annotated words have less than 10 examples in the SemCor training data. This issue is more pronounced as the imbalance occurs in both word and sense distributions. In this work, we propose MetricWSD, a non-parametric few-shot learning approach to mitigate this data imbalance issue. By learning to compute distances among the senses of a given word through episodic training, MetricWSD transfers knowledge (a learned metric space) from high-frequency words to infrequent ones. MetricWSD constructs the training episodes tailored to word frequencies and explicitly addresses the problem of the skewed distribution, as opposed to mixing all the words trained with parametric models in previous work. Without resorting to any lexical resources, MetricWSD obtains strong performance against parametric alternatives, achieving a 75.1 F1 score on the unified WSD evaluation benchmark (Raganato et al., 2017b). Our analysis further validates that infrequent words and senses enjoy significant improvement.



قيم البحث

اقرأ أيضاً

Word sense disambiguation (WSD) methods identify the most suitable meaning of a word with respect to the usage of that word in a specific context. Neural network-based WSD approaches rely on a sense-annotated corpus since they do not utilize lexical resources. In this study, we utilize both context and related gloss information of a target word to model the semantic relationship between the word and the set of glosses. We propose SensPick, a type of stacked bidirectional Long Short Term Memory (LSTM) network to perform the WSD task. The experimental evaluation demonstrates that SensPick outperforms traditional and state-of-the-art models on most of the benchmark datasets with a relative improvement of 3.5% in F-1 score. While the improvement is not significant, incorporating semantic relationships brings SensPick in the leading position compared to others.
In this paper, we made a survey on Word Sense Disambiguation (WSD). Near about in all major languages around the world, research in WSD has been conducted upto different extents. In this paper, we have gone through a survey regarding the different ap proaches adopted in different research works, the State of the Art in the performance in this domain, recent works in different Indian languages and finally a survey in Bengali language. We have made a survey on different competitions in this field and the bench mark results, obtained from those competitions.
80 - Terra Blevins , Mandar Joshi , 2021
Current models for Word Sense Disambiguation (WSD) struggle to disambiguate rare senses, despite reaching human performance on global WSD metrics. This stems from a lack of data for both modeling and evaluating rare senses in existing WSD datasets. I n this paper, we introduce FEWS (Few-shot Examples of Word Senses), a new low-shot WSD dataset automatically extracted from example sentences in Wiktionary. FEWS has high sense coverage across different natural language domains and provides: (1) a large training set that covers many more senses than previous datasets and (2) a comprehensive evaluation set containing few- and zero-shot examples of a wide variety of senses. We establish baselines on FEWS with knowledge-based and neural WSD approaches and present transfer learning experiments demonstrating that models additionally trained with FEWS better capture rare senses in existing WSD datasets. Finally, we find humans outperform the best baseline models on FEWS, indicating that FEWS will support significant future work on low-shot WSD.
Word Sense Disambiguation (WSD) aims to identify the correct meaning of polysemous words in the particular context. Lexical resources like WordNet which are proved to be of great help for WSD in the knowledge-based methods. However, previous neural n etworks for WSD always rely on massive labeled data (context), ignoring lexical resources like glosses (sense definitions). In this paper, we integrate the context and glosses of the target word into a unified framework in order to make full use of both labeled data and lexical knowledge. Therefore, we propose GAS: a gloss-augmented WSD neural network which jointly encodes the context and glosses of the target word. GAS models the semantic relationship between the context and the gloss in an improved memory network framework, which breaks the barriers of the previous supervised methods and knowledge-based methods. We further extend the original gloss of word sense via its semantic relations in WordNet to enrich the gloss information. The experimental results show that our model outperforms the state-of-theart systems on several English all-words WSD datasets.
In this paper, we applied a novel learning algorithm, namely, Deep Belief Networks (DBN) to word sense disambiguation (WSD). DBN is a probabilistic generative model composed of multiple layers of hidden units. DBN uses Restricted Boltzmann Machine (R BM) to greedily train layer by layer as a pretraining. Then, a separate fine tuning step is employed to improve the discriminative power. We compared DBN with various state-of-the-art supervised learning algorithms in WSD such as Support Vector Machine (SVM), Maximum Entropy model (MaxEnt), Naive Bayes classifier (NB) and Kernel Principal Component Analysis (KPCA). We used all words in the given paragraph, surrounding context words and part-of-speech of surrounding words as our knowledge sources. We conducted our experiment on the SENSEVAL-2 data set. We observed that DBN outperformed all other learning algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا