ﻻ يوجد ملخص باللغة العربية
Word sense disambiguation (WSD) is a long-standing problem in natural language processing. One significant challenge in supervised all-words WSD is to classify among senses for a majority of words that lie in the long-tail distribution. For instance, 84% of the annotated words have less than 10 examples in the SemCor training data. This issue is more pronounced as the imbalance occurs in both word and sense distributions. In this work, we propose MetricWSD, a non-parametric few-shot learning approach to mitigate this data imbalance issue. By learning to compute distances among the senses of a given word through episodic training, MetricWSD transfers knowledge (a learned metric space) from high-frequency words to infrequent ones. MetricWSD constructs the training episodes tailored to word frequencies and explicitly addresses the problem of the skewed distribution, as opposed to mixing all the words trained with parametric models in previous work. Without resorting to any lexical resources, MetricWSD obtains strong performance against parametric alternatives, achieving a 75.1 F1 score on the unified WSD evaluation benchmark (Raganato et al., 2017b). Our analysis further validates that infrequent words and senses enjoy significant improvement.
Word sense disambiguation (WSD) methods identify the most suitable meaning of a word with respect to the usage of that word in a specific context. Neural network-based WSD approaches rely on a sense-annotated corpus since they do not utilize lexical
In this paper, we made a survey on Word Sense Disambiguation (WSD). Near about in all major languages around the world, research in WSD has been conducted upto different extents. In this paper, we have gone through a survey regarding the different ap
Current models for Word Sense Disambiguation (WSD) struggle to disambiguate rare senses, despite reaching human performance on global WSD metrics. This stems from a lack of data for both modeling and evaluating rare senses in existing WSD datasets. I
Word Sense Disambiguation (WSD) aims to identify the correct meaning of polysemous words in the particular context. Lexical resources like WordNet which are proved to be of great help for WSD in the knowledge-based methods. However, previous neural n
In this paper, we applied a novel learning algorithm, namely, Deep Belief Networks (DBN) to word sense disambiguation (WSD). DBN is a probabilistic generative model composed of multiple layers of hidden units. DBN uses Restricted Boltzmann Machine (R