ﻻ يوجد ملخص باللغة العربية
Combining the ideas of Riesz $s$-energy and $log$-energy, we introduce the so-called $s,log^t$-energy. In this paper, we investigate the asymptotic behaviors for $N,t$ fixed and $s$ varying of minimal $N$-point $s,log^t$-energy constants and configurations of an infinite compact metric space of diameter less than $1$. In particular, we study certain continuity and differentiability properties of minimal $N$-point $s,log^t$-energy constants in the variable $s$ and we show that in the limits as $srightarrow infty$ and as $srightarrow s_0>0,$ minimal $N$-point $s,log^t$-energy configurations tend to an $N$-point best-packing configuration and a minimal $N$-point $s_0,log^t$-energy configuration, respectively. Furthermore, the optimality of $N$ distinct equally spaced points on circles in $mathbb{R}^2$ for some certain $s,log^t$ energy problems was proved.
We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $Asubset mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $sin [p-2, p-1)$, we prove that th
Let $x_1,ldots ,x_N$ be independent random points distributed according to an isotropic log-concave measure $mu $ on ${mathbb R}^n$, and consider the random polytope $$K_N:={rm conv}{ pm x_1,ldots ,pm x_N}.$$ We provide sharp estimates for the querma
Observations suggest that configurations of points on a sphere that are stable with respect to a Riesz potential distribute points uniformly over the sphere. Further, these stable configurations have a local structure that is largely hexagonal. Minim
In this work we provide a way to introduce a probability measure on the space of minimal fillings of finite additive metric spaces as well as an algorithm for its computation. The values of probability, got from the analytical solution, coincide with
For $N$-point best-packing configurations $omega_N$ on a compact metric space $(A,rho)$, we obtain estimates for the mesh-separation ratio $gamma(omega_N,A)$, which is the quotient of the covering radius of $omega_N$ relative to $A$ and the minimum p