ترغب بنشر مسار تعليمي؟ اضغط هنا

Bridging observation, theory and numerical simulation of the ocean using Machine Learning

68   0   0.0 ( 0 )
 نشر من قبل Redouane Lguensat
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and also for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community.

قيم البحث

اقرأ أيضاً

Tropical cyclones are one of the most powerful and destructive natural phenomena on earth. Tropical storms and heavy rains can cause floods, which lead to human lives and economic loss. Devastating winds accompanying cyclones heavily affect not only the coastal regions, even distant areas. Our study focuses on the intensity estimation, particularly cyclone grade and maximum sustained surface wind speed (MSWS) of a tropical cyclone over the North Indian Ocean. We use various machine learning algorithms to estimate cyclone grade and MSWS. We have used the basin of origin, date, time, latitude, longitude, estimated central pressure, and pressure drop as attributes of our models. We use multi-class classification models for the categorical outcome variable, cyclone grade, and regression models for MSWS as it is a continuous variable. Using the best track data of 28 years over the North Indian Ocean, we estimate grade with an accuracy of 88% and MSWS with a root mean square error (RMSE) of 2.3. For higher grade categories (5-7), accuracy improves to an average of 98.84%. We tested our model with two recent tropical cyclones in the North Indian Ocean, Vayu and Fani. For grade, we obtained an accuracy of 93.22% and 95.23% respectively, while for MSWS, we obtained RMSE of 2.2 and 3.4 and $R^2$ of 0.99 and 0.99, respectively.
This study investigated an approach to improve the accuracy of computationally lightweight surrogate models by updating forecasts based on historical accuracy relative to sparse observation data. Using a lightweight, ocean-wave forecasting model, we created a large number of model ensembles, with perturbed inputs, for a two-year study period. Forecasts were aggregated using a machine-learning algorithm that combined forecasts from multiple, independent models into a single best-estimate prediction of the true state. The framework was applied to a case-study site in Monterey Bay, California. A~learning-aggregation technique used historical observations and model forecasts to calculate a weight for each ensemble member. Weighted ensemble predictions were compared to measured wave conditions to evaluate performance against present state-of-the-art. Finally, we discussed how this framework, which integrates ensemble aggregations and surrogate models, can be used to improve forecasting systems and further enable scientific process studies.
We assess the value of machine learning as an accelerator for the parameterisation schemes of operational weather forecasting systems, specifically the parameterisation of non-orographic gravity wave drag. Emulators of this scheme can be trained to p roduce stable and accurate results up to seasonal forecasting timescales. Generally, more complex networks produce more accurate emulators. By training on an increased complexity version of the existing parameterisation scheme we build emulators that produce more accurate forecasts. {For medium range forecasting we find evidence our emulators are more accurate} than the version of the parametrisation scheme that is used for operational predictions. Using the current operational CPU hardware our emulators have a similar computational cost to the existing scheme, but are heavily limited by data movement. On GPU hardware our emulators perform ten times faster than the existing scheme on a CPU.
Despite recent advances in its theoretical understanding, there still remains a significant gap in the ability of existing PAC-Bayesian theories on meta-learning to explain performance improvements in the few-shot learning setting, where the number o f training examples in the target tasks is severely limited. This gap originates from an assumption in the existing theories which supposes that the number of training examples in the observed tasks and the number of training examples in the target tasks follow the same distribution, an assumption that rarely holds in practice. By relaxing this assumption, we develop two PAC-Bayesian bounds tailored for the few-shot learning setting and show that two existing meta-learning algorithms (MAML and Reptile) can be derived from our bounds, thereby bridging the gap between practice and PAC-Bayesian theories. Furthermore, we derive a new computationally-efficient PACMAML algorithm, and show it outperforms existing meta-learning algorithms on several few-shot benchmark datasets.
Dissolved manganese (Mn) is a biologically essential element, and its oxidised form is involved in the removal of trace elements from ocean waters. Recently, a large number of highly accurate Mn measurements have been obtained in the Atlantic, Indian and Arctic Oceans as part of the GEOTRACES programme. The goal of this study is to combine these new observations with state-of-the-art modelling to give new insights into the main sources and redistribution of Mn throughout the ocean. To this end, we simulate the distribution of dissolved Mn using a global-scale circulation model. This first model includes simple parameterisations to account, realistically, for the sources, processes and sinks of Mn in the ocean. Whereas oxidation and (photo)reduction, as well as aggregation and settling are parameterised in the model, biological uptake is not yet taken into account by the model. Our model reproduces observations accurately and provides the following insights: - The high surface concentrations of manganese are caused by the combination of photoreduction and sources to the upper ocean. The most important sources are dust, then sediments, and, more locally, rivers. - Results show that surface Mn in the Atlantic Ocean moves downwards into the North Atlantic Deep Water, but because of strong removal rates the Mn does not propagate southwards. - There is a mostly homogeneous background concentration of dissolved Mn of about 0.10 to 0.15 nM throughout most of the deep ocean. The model reproduces this by means of a threshold on manganese oxides of 25 pM, suggesting that a minimal concentration of Mn is needed before aggregation and removal become efficient. - The observed sharp hydrothermal signals are produced by assuming both a high source and a strong removal of Mn near hydrothermal vents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا