ﻻ يوجد ملخص باللغة العربية
Two-sided marketplace platforms often run experiments to test the effect of an intervention before launching it platform-wide. A typical approach is to randomize individuals into the treatment group, which receives the intervention, and the control group, which does not. The platform then compares the performance in the two groups to estimate the effect if the intervention were launched to everyone. We focus on two common experiment types, where the platform randomizes individuals either on the supply side or on the demand side. The resulting estimates of the treatment effect in these experiments are typically biased: because individuals in the market compete with each other, individuals in the treatment group affect those in the control group and vice versa, creating interference. We develop a simple tractable market model to study bias and variance in these experiments with interference. We focus on two choices available to the platform: (1) Which side of the platform should it randomize on (supply or demand)? (2) What proportion of individuals should be allocated to treatment? We find that both choices affect the bias and variance of the resulting estimators but in different ways. The bias-optimal choice of experiment type depends on the relative amounts of supply and demand in the market, and we discuss how a platform can use market data to select the experiment type. Importantly, we find in many circumstances, choosing the bias-optimal experiment type has little effect on variance. On the other hand, the choice of treatment proportion can induce a bias-variance tradeoff, where the bias-minimizing proportion increases variance. We discuss how a platform can navigate this tradeoff and best choose the treatment proportion, using a combination of modeling as well as contextual knowledge about the market, the risk of the intervention, and reasonable effect sizes of the intervention.
We develop an analytical framework to study experimental design in two-sided marketplaces. Many of these experiments exhibit interference, where an intervention applied to one market participant influences the behavior of another participant. This in
We present the Stata commands probitfe and logitfe, which estimate probit and logit panel data models with individual and/or time unobserved effects. Fixed effect panel data methods that estimate the unobserved effects can be severely biased because
We investigate the problem of fair recommendation in the context of two-sided online platforms, comprising customers on one side and producers on the other. Traditionally, recommendation services in these platforms have focused on maximizing customer
In many observational studies in social science and medical applications, subjects or individuals are connected, and one units treatment and attributes may affect another units treatment and outcome, violating the stable unit treatment value assumpti
When the Stable Unit Treatment Value Assumption (SUTVA) is violated and there is interference among units, there is not a uniquely defined Average Treatment Effect (ATE), and alternative estimands may be of interest, among them average unit-level dif