ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperbolic cone metrics and billiards

110   0   0.0 ( 0 )
 نشر من قبل Viveka Erlandsson
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.

قيم البحث

اقرأ أيضاً

114 - C. Abbott , M. Hull 2019
It is known that every infinite index quasi-convex subgroup $H$ of a non-elementary hyperbolic group $G$ is a free factor in a larger quasi-convex subgroup of $G$. We give a probabilistic generalization of this result. That is, we show that when $R$ is a subgroup generated by independent random walks in $G$, then $langle H, Rranglecong Hast R$ with probability going to one as the lengths of the random walks go to infinity and this subgroup is quasi-convex in $G$. Moreover, our results hold for a large class of groups acting on hyperbolic metric spaces and subgroups with quasi-convex orbits. In particular, when $G$ is the mapping class group of a surface and $H$ is a convex cocompact subgroup we show that $langle H, Rrangle$ is convex cocompact and isomorphic to $ Hast R$.
Let $Sigma$ be a hyperbolic surface. We study the set of curves on $Sigma$ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary $gamma_0$. For example, in the particular case that $Sigma$ is a once-punctured to rus, we prove that the cardinality of the set of curves of type $gamma_0$ and of at most length $L$ is asymptotic to $L^2$ times a constant.
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
We investigate the translation lengths of group elements that arise in random walks on weakly hyperbolic groups. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation leng ths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov and almost every random walk on $mathrm{Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk. We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmuller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
We establish sufficient conditions for the hyperbolicity of the billiard dynamics on surfaces of constant curvature. This extends known results for planar billiards. Using these conditions, we construct large classes of billiard tables with positive Lyapunov exponents on the sphere and on the hyperbolic plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا