ﻻ يوجد ملخص باللغة العربية
Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of non-thermal particles and high-energy radiation. In the absence of particle collisions in the system, theoretical works show that the interaction of an expanding plasma with a pre-existing electromagnetic structure (as in our case) is able to induce energy dissipation and allow for shock formation. Shock formation can alternatively take place when two plasmas interact, through microscopic instabilities inducing electromagnetic fields which are able in turn to mediate energy dissipation and shock formation. Using our platform where we couple a fast-expanding plasma induced by high-power lasers (JLF/Titan at LLNL and LULI2000) with high-strength magnetic fields, we have investigated the generation of magnetized collisionless shock and the associated particle energization. We have characterized the shock to be collisionless and super-critical. We report here on measurements of the plasma density, temperature, the electromagnetic field structures, and particle energization in the experiments, under various conditions of ambient plasma and B-field. We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations. As a companion paper of citet{yao2020laboratory}, here we show additional results of the experiments and simulations, providing more information to reproduce them and demonstrating the robustness of our interpreted proton energization mechanism to be shock surfing acceleration.
Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite in
Collisionless shocks are common features in space and astrophysical systems where supersonic plasma flows interact, such as in the solar wind, the heliopause, and supernova remnants. Recent experimental capabilities and diagnostics allow detailed lab
Using the field-particle correlation technique, we examine the particle energization in a 1D-2V continuum Vlasov--Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field-particle correlation technique with t
Shocks act to convert incoming supersonic flows to heat, and in collisionless plasmas the shock layer forms on kinetic plasma scales through collective electromagnetic effects. These collisionless shocks have been observed in many space and astrophys
Recent laboratory experiments with laser-produced plasmas have observed and studied a number of fundamental physical processes relevant to magnetized astrophysical plasmas, including magnetic reconnection, collisionless shocks, and magnetic field gen