ترغب بنشر مسار تعليمي؟ اضغط هنا

The beam exchange of a circular cooler ring with a ultrafast harmonic kicker

149   0   0.0 ( 0 )
 نشر من قبل Gunn Tae Park
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we describe a harmonic kicker system used in the beam exchange scheme for the Circulator Cooling Ring (CCR) of the Jefferson Lab Electron Ion Collider(JLEIC). By delivering an ultra-fast deflecting kick, a kicker directs electron bunches selectively in/out of the CCR without degrading the beam dynamics of the CCR optimized for ion beam cooling. We will discuss the design principle of the kicker system and demonstrate its performance with various numerical simulations. In particular, the degrading effects of realistic harmonic kicks on the beam dynamics, such as 3D kick field profiles interacting with the magnetized beam, is studied in detail with a scheme that keeps the cooling efficiency within allowable limits.



قيم البحث

اقرأ أيضاً

Cooling of hadron beams is critically important in the next generation of hadron storage rings for delivery of unprecedented performance. One such application is the electron-ion collider presently under development in the US. The desire to develop e lectron coolers for operation at much higher energies than previously achieved necessitates the use of radio-frequency (RF) fields for acceleration as opposed to the conventional, electrostatic approach. While electron cooling is a mature technology at low energy utilizing a DC beam, RF acceleration requires the cooling beam to be bunched, thus extending the parameter space to an unexplored territory. It is important to experimentally demonstrate the feasibility of cooling with electron bunches and further investigate how the relative time structure of the two beams affects the cooling properties; thus, a set of four pulsed-beam cooling experiments was carried out by a collaboration of Jefferson Lab and Institute of Modern Physics (IMP). The experiments have successfully demonstrated cooling with a beam of electron bunches in both the longitudinal and transverse directions for the first time. We have measured the effect of the electron bunch length and longitudinal ion focusing strength on the temporal evolution of the longitudinal and transverse ion beam profile and demonstrate that if the synchronization can be accurately maintained, the dynamics are not adversely affected by the change in time structure.
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storag e-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler and initial tracking simulations are presented and some potential issues such as coherent synchrotron radiation and beam break up are discussed.
The ALS-U light source will implement on-axis single-train swap-out injection employing an accumulator between the booster and storage rings. The accumulator ring design is a twelve period triple-bend achromat that will be installed along the inner c ircumference of the storage-ring tunnel. A non-conventional injection scheme will be utilized for top-off off-axis injection from the booster into the accumulator ring meant to accommodate a large $sim 300$~nm emittance beam into a vacuum-chamber with a limiting horizontal aperture radius as small as $8$ mm. The scheme incorporates three dipole kickers distributed over three sectors, with two kickers perturbing the stored beam and the third affecting both the stored and the injected beam trajectories. This paper describes this ``3DK injection scheme and how it fits the accumulator rings particular requirements. We describe the design and optimization process, and how we evaluated its fitness as a solution for booster-to-accumulator ring injection.
During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedanc e. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.
Accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to study structural dynamics at the nanometer spatial scale and picosecond temporal scale. Here we report experimental tests of a prototype MUEM where hi gh quality images with nanoscale fine structures were recorded with a pulsed 3 MeV picosecond electron beam. The temporal and spatial resolution of the MUEM operating in single-shot mode is about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4e-19 s*m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have wide applications in many areas of science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا