ﻻ يوجد ملخص باللغة العربية
In this paper, we describe a harmonic kicker system used in the beam exchange scheme for the Circulator Cooling Ring (CCR) of the Jefferson Lab Electron Ion Collider(JLEIC). By delivering an ultra-fast deflecting kick, a kicker directs electron bunches selectively in/out of the CCR without degrading the beam dynamics of the CCR optimized for ion beam cooling. We will discuss the design principle of the kicker system and demonstrate its performance with various numerical simulations. In particular, the degrading effects of realistic harmonic kicks on the beam dynamics, such as 3D kick field profiles interacting with the magnetized beam, is studied in detail with a scheme that keeps the cooling efficiency within allowable limits.
Cooling of hadron beams is critically important in the next generation of hadron storage rings for delivery of unprecedented performance. One such application is the electron-ion collider presently under development in the US. The desire to develop e
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storag
The ALS-U light source will implement on-axis single-train swap-out injection employing an accumulator between the booster and storage rings. The accumulator ring design is a twelve period triple-bend achromat that will be installed along the inner c
During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedanc
Accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to study structural dynamics at the nanometer spatial scale and picosecond temporal scale. Here we report experimental tests of a prototype MUEM where hi