ﻻ يوجد ملخص باللغة العربية
We derive a precise relation of poles of Eisenstein series associated to the cuspidal datum $chiotimessigma$ and lowest occurrence of theta lifts of a cuspidal automorphic representation $sigma$ of a unitary group, where $chi$ is conjugate self-dual character. We also give a refined result on non-vanishing of periods of Eisenstein series and first occurrence of theta lifts. This gives constraints on existence of $(chi,b)$-factors in the global $A$-parameter of $sigma$.
Following the idea of [GJS09] for orthogonal groups, we introduce a new family of period integrals for cuspidal automorphic representations $sigma$ of unitary groups and investigate their relation with the occurrence of a simple global Arthur paramet
We give constraints on existence of $(chi,b)$-factors in the global $A$-parameter of a genuine cuspidal automorphic representation $sigma$ of the metaplectic group in terms of the invariant, lowest occurrence index, of theta lifts to odd orthogonal g
In this paper, we introduce a new family of period integrals attached to irreducible cuspidal automorphic representations $sigma$ of symplectic groups $mathrm{Sp}_{2n}(mathbb{A})$, which detects the right-most pole of the $L$-function $L(s,sigmatimes
In this paper we analyze Fourier coefficients of automorphic forms on a finite cover $G$ of an adelic split simply-laced group. Let $pi$ be a minimal or next-to-minimal automorphic representation of $G$. We prove that any $etain pi$ is completely det
In this paper, we study top Fourier coefficients of certain automorphic representations of $mathrm{GL}_n(mathbb{A})$. In particular, we prove a conjecture of Jiang on top Fourier coefficients of isobaric automorphic representations of $mathrm{GL}_n(m