ترغب بنشر مسار تعليمي؟ اضغط هنا

Piggyback GAN: Efficient Lifelong Learning for Image Conditioned Generation

169   0   0.0 ( 0 )
 نشر من قبل Mengyao Zhai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans accumulate knowledge in a lifelong fashion. Modern deep neural networks, on the other hand, are susceptible to catastrophic forgetting: when adapted to perform new tasks, they often fail to preserve their performance on previously learned tasks. Given a sequence of tasks, a naive approach addressing catastrophic forgetting is to train a separate standalone model for each task, which scales the total number of parameters drastically without efficiently utilizing previous models. In contrast, we propose a parameter efficient framework, Piggyback GAN, which learns the current task by building a set of convolutional and deconvolutional filters that are factorized into filters of the models trained on previous tasks. For the current task, our model achieves high generation quality on par with a standalone model at a lower number of parameters. For previous tasks, our model can also preserve generation quality since the filters for previous tasks are not altered. We validate Piggyback GAN on various image-conditioned generation tasks across different domains, and provide qualitative and quantitative results to show that the proposed approach can address catastrophic forgetting effectively and efficiently.



قيم البحث

اقرأ أيضاً

While Visual Question Answering (VQA) models continue to push the state-of-the-art forward, they largely remain black-boxes - failing to provide insight into how or why an answer is generated. In this ongoing work, we propose addressing this shortcom ing by learning to generate counterfactual images for a VQA model - i.e. given a question-image pair, we wish to generate a new image such that i) the VQA model outputs a different answer, ii) the new image is minimally different from the original, and iii) the new image is realistic. Our hope is that providing such counterfactual examples allows users to investigate and understand the VQA models internal mechanisms.
Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In t his paper, we take inspiration from kernel density estimation techniques and introduce a non-parametric approach to modeling distributions of complex datasets. We partition the data manifold into a mixture of overlapping neighborhoods described by a datapoint and its nearest neighbors, and introduce a model, called instance-conditioned GAN (IC-GAN), which learns the distribution around each datapoint. Experimental results on ImageNet and COCO-Stuff show that IC-GAN significantly improves over unconditional models and unsupervised data partitioning baselines. Moreover, we show that IC-GAN can effortlessly transfer to datasets not seen during training by simply changing the conditioning instances, and still generate realistic images. Finally, we extend IC-GAN to the class-conditional case and show semantically controllable generation and competitive quantitative results on ImageNet; while improving over BigGAN on ImageNet-LT. We will opensource our code and trained models to reproduce the reported results.
We present Poly-GAN, a novel conditional GAN architecture that is motivated by Fashion Synthesis, an application where garments are automatically placed on images of human models at an arbitrary pose. Poly-GAN allows conditioning on multiple inputs a nd is suitable for many tasks, including image alignment, image stitching, and inpainting. Existing methods have a similar pipeline where three different networks are used to first align garments with the human pose, then perform stitching of the aligned garment and finally refine the results. Poly-GAN is the first instance where a common architecture is used to perform all three tasks. Our novel architecture enforces the conditions at all layers of the encoder and utilizes skip connections from the coarse layers of the encoder to the respective layers of the decoder. Poly-GAN is able to perform a spatial transformation of the garment based on the RGB skeleton of the model at an arbitrary pose. Additionally, Poly-GAN can perform image stitching, regardless of the garment orientation, and inpainting on the garment mask when it contains irregular holes. Our system achieves state-of-the-art quantitative results on Structural Similarity Index metric and Inception Score metric using the DeepFashion dataset.
We introduce a simple but effective unsupervised method for generating realistic and diverse images. We train a class-conditional GAN model without using manually annotated class labels. Instead, our model is conditional on labels automatically deriv ed from clustering in the discriminators feature space. Our clustering step automatically discovers diverse modes, and explicitly requires the generator to cover them. Experiments on standard mode collapse benchmarks show that our method outperforms several competing methods when addressing mode collapse. Our method also performs well on large-scale datasets such as ImageNet and Places365, improving both image diversity and standard quality metrics, compared to previous methods.
Conditional image generation is effective for diverse tasks including training data synthesis for learning-based computer vision. However, despite the recent advances in generative adversarial networks (GANs), it is still a challenging task to genera te images with detailed conditioning on object shapes. Existing methods for conditional image generation use category labels and/or keypoints and are only give limited control over object categories. In this work, we present SCGAN, an architecture to generate images with a desired shape specified by an input normal map. The shape-conditioned image generation task is achieved by explicitly modeling the image appearance via a latent appearance vector. The network is trained using unpaired training samples of real images and rendered normal maps. This approach enables us to generate images of arbitrary object categories with the target shape and diverse image appearances. We show the effectiveness of our method through both qualitative and quantitative evaluation on training data generation tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا