ترغب بنشر مسار تعليمي؟ اضغط هنا

On a gauge-invariant deformation of a classical gauge-invariant theory

118   0   0.0 ( 0 )
 نشر من قبل Peter M. Lavrov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a general gauge theory with independent generators and study the problem of gauge-invariant deformation of initial gauge-invariant classical action. The problem is formulated in terms of BV-formalism and is reduced to describing the general solution to the classical master equation. We show that such general solution is determined by two arbitrary generating functions of the initial fields. As a result, we construct in explicit form the deformed action and the deformed gauge generators in terms of above functions. We argue that the deformed theory must in general be non-local. The developed deformation procedure is applied to Abelian vector field theory and we show that it allows to derive non-Abelain Yang-Mills theory. This procedure is also applied to free massless integer higher spin field theory and leads to local cubic interaction vertex for such fields.


قيم البحث

اقرأ أيضاً

We propose a method of constructing a gauge invariant canonical formulation for non-gauge classical theory which depends on a set of parameters. Requirement of closure for algebra of operators generating quantum gauge transformations leads to restric tions on parameters of the theory. This approach is then applied for illustration to bosonic string theory coupled to background tachyonic field. It is shown that within the proposed canonical formulation the known mass-shell condition for tachyon is produced.
A non-gauge dynamical system depending on parameters is considered. It is shown that these parameters can have such values that corresponding canonically quantized theory will be gauge invariant. The equations allowing to find these values of paramet ers are derived. The prescription under consideration is applied to obtaining the equation of motion for tachyon background field in closed bosonic string theory.
We propose a method to compute the scattering angle for classical black hole scattering directly from two massive particle irreducible diagrams in a heavy-mass effective field theory approach to general relativity, without the need of subtracting ite ration terms. The amplitudes in this effective theory are constructed using a recently proposed novel colour-kinematic/double copy for tree-level two-scalar, multi-graviton amplitudes, where the BCJ numerators are gauge invariant and local with respect to the massless gravitons. These tree amplitudes, together with graviton tree amplitudes, enter the construction of the required $D$-dimensional loop integrands and allow for a direct extraction of contributions relevant for classical physics. In particular the soft/heavy-mass expansions of full integrands is circumvented, and all iterating contributions can be dropped from the get go. We use this method to compute the scattering angle up to third post-Minkowskian order in four dimensions, including radiation reaction contributions, also providing the expression of the corresponding integrand in $D$ dimensions.
We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, u sing Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.
78 - D. Dudal , D. Vercauteren 2017
The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, de scribable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا