ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-reciprocity and quantum correlations of light transport in hot atoms via reservoir engineering

55   0   0.0 ( 0 )
 نشر من قبل Lu Xingda
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The breaking of reciprocity is a topic of great interest in fundamental physics and optical information processing applications. We demonstrate non-reciprocal light transport in a quantum system of hot atoms by engineering the dissipative atomic reservoir. Our scheme is based on the phase-sensitive light transport in a multi-channel photon-atom interaction configuration, where the phase of collective atomic excitations is tunable through external driving fields. Remarkably, we observe inter-channel quantum correlations which originate from interactions with the judiciously engineered reservoir. The non-reciprocal transport in a quantum optical atomic system constitutes a new paradigm for atom-based, non-reciprocal optics, and offers opportunities for quantum simulations with coupled optical channels.

قيم البحث

اقرأ أيضاً

Almost 60 years ago Dicke introduced the term superradiance to describe a signature quantum effect: N atoms can collectively emit light at a rate proportional to N^2. Even for moderate N this represents a significant increase over the prediction of c lassical physics, and the effect has found applications ranging from probing exciton delocalisation in biological systems, to developing a new class of laser, and even in astrophysics. Structures that super-radiate must also have enhanced absorption, but the former always dominates in natural systems. Here we show that modern quantum control techniques can overcome this restriction. Our theory establishes that superabsorption can be achieved and sustained in certain simple nanostructures, by trapping the system in a highly excited state while extracting energy into a non-radiative channel. The effect offers the prospect of a new class of quantum nanotechnology, capable of absorbing light many times faster than is currently possible; potential applications of this effect include light harvesting and photon detection. An array of quantum dots or a porphyrin ring could provide an implementation to demonstrate this effect.
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quant um dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify itss accuracy.
We show how to design different couplings between a single ion trapped in a harmonic potential and an environment. This will provide the basis for the experimental study of the process of decoherence in a quantum system. The coupling is due to the ab sorption of a laser photon and subsequent spontaneous emission. The variation of the laser frequencies and intensities allows one to ``engineer the coupling and select the master equation describing the motion of the ion.
By using the coherent backscattering interference effect, we investigate experimentally and theoretically how coherent transport of light inside a cold atomic vapour is affected by the residual motion of atomic scatterers. As the temperature of the a tomic cloud increases, the interference contrast dramatically decreases emphazising the role of motion-induced decoherence for resonant scatterers even in the sub-Doppler regime of temperature. We derive analytical expressions for the corresponding coherence time.
We present the first measurement of two-mode squeezing between the twin beams produced by a doubly resonant optical parameter oscillator (OPO) in above threshold operation, based on parametric amplification by non degenerate four wave mixing with rub idium $^{85}$Rb. We demonstrate a maximum intensity difference squeezing of -2.7 dB (-3,5 dB corrected for losses) with a pump power of 285 mW and an output power of 12 mW for each beam, operating close to the D1 line of Rb atoms. The possibility to use open cavities combined with the high gain media can provide a strong level of noise compression, and the access to new operation regimes that could not be explored by crystal based OPOs. The spectral bandwidth of the squeezed light is broadened by the cavity dynamics, and the squeezing level is robust for strong pump powers. Stable operation was obtained up to four times above the threshold. Moreover, its operation close to the atomic resonances of alkali atoms allows a natural integration into quantum networks including structures such as quantum memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا