ﻻ يوجد ملخص باللغة العربية
A long standing puzzle in the rheology of living cells is the origin of the experimentally observed long time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may provide an explanation for the slow stress relaxation observed in cells.
We report analytical and numerical modelling of active elastic networks, motivated by experiments on crosslinked actin networks contracted by myosin motors. Within a broad range of parameters, the motor-driven collapse of active elastic networks lead
How cells move through the three-dimensional extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on flat surfaces, it is expected that experimental
We suggest a simple model for reversible cross-links, binding and unbinding to/from a network of semiflexible polymers. The resulting frequency dependent response of the network to an applied shear is calculated via Brownian dynamics simulations. It
We revisit the relation between the shear stress relaxation modulus $G(t)$, computed at finite shear strain $0 < gamma ll 1$, and the shear stress autocorrelation functions $C(t)|_{gamma}$ and $C(t)|_{tau}$ computed, respectively, at imposed strain $
Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactio