ترغب بنشر مسار تعليمي؟ اضغط هنا

Collaborative Information Sharing for ML-Based Threat Detection

87   0   0.0 ( 0 )
 نشر من قبل Talha Ongun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, coordinated attack campaigns started to become more widespread on the Internet. In May 2017, WannaCry infected more than 300,000 machines in 150 countries in a few days and had a large impact on critical infrastructure. Existing threat sharing platforms cannot easily adapt to emerging attack patterns. At the same time, enterprises started to adopt machine learning-based threat detection tools in their local networks. In this paper, we pose the question: emph{What information can defenders share across multiple networks to help machine learning-based threat detection adapt to new coordinated attacks?} We propose three information sharing methods across two networks, and show how the shared information can be used in a machine-learning network-traffic model to significantly improve its ability of detecting evasive self-propagating malware.



قيم البحث

اقرأ أيضاً

Insider threat detection has been a challenging task over decades, existing approaches generally employ the traditional generative unsupervised learning methods to produce normal user behavior model and detect significant deviations as anomalies. How ever, such approaches are insufficient in precision and computational complexity. In this paper, we propose a novel insider threat detection method, Image-based Insider Threat Detector via Geometric Transformation (IGT), which converts the unsupervised anomaly detection into supervised image classification task, and therefore the performance can be boosted via computer vision techniques. To illustrate, our IGT uses a novel image-based feature representation of user behavior by transforming audit logs into grayscale images. By applying multiple geometric transformations on these behavior grayscale images, IGT constructs a self-labelled dataset and then train a behavior classifier to detect anomaly in self-supervised manner. The motivation behind our proposed method is that images converted from normal behavior data may contain unique latent features which keep unchanged after geometric transformation, while malicious ones cannot. Experimental results on CERT dataset show IGT outperforms the classical autoencoder-based unsupervised insider threat detection approaches, and improves the instance and user based Area under the Receiver Operating Characteristic Curve (AUROC) by 4% and 2%, respectively.
This paper considers the use of novel technologies for mitigating attacks that aim at compromising intrusion detection systems (IDSs). Solutions based on collaborative intrusion detection networks (CIDNs) could increase the resilience against such at tacks as they allow IDS nodes to gain knowledge from each other by sharing information. However, despite the vast research in this area, trust management issues still pose significant challenges and recent works investigate whether these could be addressed by relying on blockchain and related distributed ledger technologies. Towards that direction, the paper proposes the use of a trust-based blockchain in CIDNs, referred to as trust-chain, to protect the integrity of the information shared among the CIDN peers, enhance their accountability, and secure their collaboration by thwarting insider attacks. A consensus protocol is proposed for CIDNs, which is a combination of a proof-of-stake and proof-of-work protocols, to enable collaborative IDS nodes to maintain a reliable and tampered-resistant trust-chain.
Cyber attacks are becoming more frequent and sophisticated, introducing significant challenges for organizations to protect their systems and data from threat actors. Today, threat actors are highly motivated, persistent, and well-founded and operate in a coordinated manner to commit a diversity of attacks using various sophisticated tactics, techniques, and procedures. Given the risks these threats present, it has become clear that organizations need to collaborate and share cyber threat information (CTI) and use it to improve their security posture. In this paper, we present TRADE -- TRusted Anonymous Data Exchange -- a collaborative, distributed, trusted, and anonymized CTI sharing platform based on blockchain technology. TRADE uses a blockchain-based access control framework designed to provide essential features and requirements to incentivize and encourage organizations to share threat intelligence information. In TRADE, organizations can fully control their data by defining sharing policies enforced by smart contracts used to control and manage CTI sharing in the network. TRADE allows organizations to preserve their anonymity while keeping organizations fully accountable for their action in the network. Finally, TRADE can be easily integrated within existing threat intelligence exchange protocols - such as trusted automated exchange of intelligence information (TAXII) and OpenDXL, thereby allowing a fast and smooth technology adaptation.
Given a large number of low-level heterogeneous categorical alerts from an anomaly detection system, how to characterize complex relationships between different alerts, filter out false positives, and deliver trustworthy rankings and suggestions to e nd users? This problem is motivated by and generalized from applications in enterprise security and attack scenario reconstruction. While existing techniques focus on either reconstructing abnormal scenarios or filtering out false positive alerts, it can be more advantageous to consider the two perspectives simultaneously in order to improve detection accuracy and better understand anomaly behaviors. In this paper, we propose CAR, a collaborative alerts ranking framework that exploits both temporal and content correlations from heterogeneous categorical alerts. CAR first builds a tree-based model to capture both short-term correlations and long-term dependencies in each alert sequence, which identifies abnormal action sequences. Then, an embedding-based model is employed to learn the content correlations between alerts via their heterogeneous categorical attributes. Finally, by incorporating both temporal and content dependencies into one optimization framework, CAR ranks both alerts and their corresponding alert patterns. Our experiments, using real-world enterprise monitoring data and real attacks launched by professional hackers, show that CAR can accurately identify true positive alerts and successfully reconstruct attack scenarios at the same time.
Information sharing is vital in resisting cyberattacks, and the volume and severity of these attacks is increasing very rapidly. Therefore responders must triage incoming warnings in deciding how to act. This study asked a very specific question: how can the addition of confidence information to alerts and warnings improve overall resistance to cyberattacks. We sought, in particular, to identify current practices, and if possible, to identify some best practices. The research involved literature review and interviews with subject matter experts at every level from system administrators to persons who develop broad principles of policy. An innovative Modified Online Delphi Panel technique was used to elicit judgments and recommendations from experts who were able to speak with each other and vote anonymously to rank proposed practices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا