ﻻ يوجد ملخص باللغة العربية
Free fermions on Johnson graphs $J(n,k)$ are considered and the entanglement entropy of sets of neighborhoods is computed. For a subsystem composed of a single neighborhood, an analytical expression is provided by the decomposition in irreducible submodules of the Terwilliger algebra of $J(n,k)$ embedded in two copies of $mathfrak{su}(2)$. For a subsytem composed of multiple neighborhoods, the construction of a block-tridiagonal operator which commutes with the entanglement Hamiltonian is presented, its usefulness in computing the entropy is stressed and the area law pre-factor is discussed.
Free fermions on Hamming graphs $H(d,q)$ are considered and the entanglement entropy for two types of subsystems is computed. For subsets of vertices that form Hamming subgraphs, an analytical expression is obtained. For subsets corresponding to a ne
We conclude our analysis of the linear response of charge transport in lattice systems of free fermions subjected to a random potential by deriving general mathematical properties of its conductivity at the macroscopic scale. The present paper belong
We extend [Bru-de Siqueira Pedra-Hertling, J. Math. Phys. 56 (2015) 051901] in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field th
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n
We investigate the distribution of the resonances near spectral thresholds of Laplace operators on regular tree graphs with $k$-fold branching, $k geq 1$, perturbed by nonself-adjoint exponentially decaying potentials. We establish results on the abs