ﻻ يوجد ملخص باللغة العربية
By introducing new weighted vector fields as multipliers, we derive quantitative pointwise estimates for solutions of defocusing semilinear wave equation in $mathbb{R}^{1+3}$ with pure power nonlinearity for all $1<pleq 2$. Consequently, the solution vanishes on the future null infinity and decays in time polynomially for all $sqrt{2}<pleq 2$. This improves the uniform boundedness result of the second author when $frac{3}{2}<pleq 2$.
In this paper, we investigate the global behaviors of solutions to defocusing semilinear wave equations in $mathbb{R}^{1+d}$ with $dgeq 3$. We prove that in the energy space the solution verifies the integrated local energy decay estimates for the fu
In this paper, we study the asymptotic decay properties for defocusing semilinear wave equations in $mathbb{R}^{1+2}$ with pure power nonlinearity. By applying new vector fields to null hyperplane, we derive improved time decay of the potential energ
This paper is devoted to the study of asymptotic behaviors of solutions to the one-dimensional defocusing semilinear wave equation. We prove that finite energy solution tends to zero in the pointwise sense, hence improving the averaged decay of Lindb
It is believed or conjectured that the semilinear wave equations with scattering space dependent damping admit the Strauss critical exponent, see Ikehata-Todorova-Yordanov cite{ITY}(the bottom in page 2) and Nishihara-Sobajima-Wakasugi cite{N2}(conje
In this work, we investigate the problem of finite time blow up as well as the upper bound estimates of lifespan for solutions to small-amplitude semilinear wave equations with mixed nonlinearities $a |u_t|^p+b |u|^q$, posed on asymptotically Euclide