ﻻ يوجد ملخص باللغة العربية
We present a Research-through-Design case study of the design and development of an intimate-space tangible device perhaps best understood as a socially assistive robot, aimed at scaffolding childrens efforts at emotional regulation. This case study covers the initial research device development, as well as knowledge transfer to a product development company towards translating the research into a workable commercial product that could also serve as a robust research product for field trials. Key contributions to the literature include: 1. sharing of lessons learned from the knowledge transfer process that can be useful to others interested in developing robust products, whether commercial or research, that preserve design values, while allowing for large scale deployment and research; 2. articulation of a design space in HCI/HRI--Human Robot Interaction--of intimate space socially assistive robots, with the current artifact as a central exemplar, contextualized alongside other related HRI artifacts.
This work describes a new human-in-the-loop (HitL) assistive grasping system for individuals with varying levels of physical capabilities. We investigated the feasibility of using four potential input devices with our assistive grasping system interf
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems (e.g. stroke). During a physical therapy session, generating personalized feedback
Socially Assistive Robots (SARs) offer great promise for improving outcomes in paediatric rehabilitation. However, the design of software and interactive capabilities for SARs must be carefully considered in the context of their intended clinical use
Trust in automation, or more recently trust in autonomy, has received extensive research attention in the past two decades. The majority of prior literature adopted a snapshot view of trust and typically evaluated trust through questionnaires adminis
Robots may soon play a role in higher education by augmenting learning environments and managing interactions between instructors and learners. Little, however, is known about how the presence of robots in the learning environment will influence acad