ﻻ يوجد ملخص باللغة العربية
Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in the cooling of a mechanical resonator to its ground-state, driving phonon lasing, the generation of entangled states, and observation of the optical-spring effect. In certain magnetic materials, mechanical vibrations can interact with magnetic excitations (magnons) via the magnetostrictive interaction, resulting in an analogous magnon-induced dynamical backaction. In this article, we directly observe the impact of magnon-induced dynamical backaction on a spherical magnetic samples mechanical vibrations. Moreover, dynamical backaction effects play a crucial role in many recent theoretical proposals; thus, our work provides the foundation for future experimental work pursuing many of these theoretical proposals.
Dynamical backaction has proven to be a versatile tool in cavity optomechanics, allowing for precise manipulation of a mechanical resonators motion using confined optical photons. In this work, we present measurements of a silicon whispering-gallery-
Magnons, namely spin waves, are collective spin excitations in ferromagnets, and their control through coupling with other excitations is a key technology for future hybrid spintronic devices. Although strong coupling has been demonstrated with micro
Cavity optomechanical systems have become a popular playground for controllable studies of nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires ca
We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations,
Equilibrium topological phases are robust against weak static disorder but may break down in the strong disorder regime. Here we explore the stability of the quench-induced emergent dynamical topology in the presence of dynamical noise. We develop an