ﻻ يوجد ملخص باللغة العربية
Given overlapping subsets of a set of taxa (e.g. species), and posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we infer a posterior distribution on phylogenetic tree topologies for the entire taxon set? Although the equivalent problem for in the non-Bayesian case has attracted substantial research, the Bayesian case has not attracted the attention it deserves. In this paper we develop a variational Bayes approach to this problem and demonstrate its effectiveness.
Variational Bayesian neural networks (BNNs) perform variational inference over weights, but it is difficult to specify meaningful priors and approximate posteriors in a high-dimensional weight space. We introduce functional variational Bayesian neura
Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not o
We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the network autoregression framework. The VB approach allows for the automatic identification of the dynamic structure of such a model and obtains a
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structur
Variational inference enables approximate posterior inference of the highly over-parameterized neural networks that are popular in modern machine learning. Unfortunately, such posteriors are known to exhibit various pathological behaviors. We prove t